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PART L

ESTABLISHMENT AND GENERAL SOLUTION OF THE ILQUATIONS OF THE
ProBrEM DiIscUssEeD.

§ 1. General Sketch of the Problem proposed.

TaE consideration of the stresses and strains which occur in a rectangular
parallelopiped of elastic material subjected to given surface forces over its six faces
leads to one of the most general, as it is one of the oldest, problems in the Theory of
Elasticity. Lamg, in his ¢ Lecons sur I'Elasticité des Corps solides,’” published in 1852,
describes it as “le plus difficile peut-8tre de la théorie mathématique de 1élasticité.”
In spite of repeated attempts, however, the problem remains still unsolved.

In its complete form it may be stated as follows :—

Let the origin be taken at the centre of the parallelopiped and the axes 0x, 0y, 0z
parallel to its edges. Let the lengths of these edges be 2a, 2b, 2¢. Let u, v, w
denote the displacements of any point (z, v, z) parallel to the three axes, and,

following the notation of TopmUNTER and PrarsoN’s ¢ History of Elasticity, let st

denote the stress, parallel to s, across an elementary area perpendicular to ¢, then we
have the six stresses

dw dv dw
x’)c_)\8+2p,d yz_p,<dz+(—l;>
—~ dv —
yy:)\S—{—Zp,@ 2 =

(dw > (1,
i + @)

where § = — + ----- + , and \, u are the elastic constants of LAME.
dy d

£=m+%?'@

Also u, v, w must satisfy, inside the materlal, the following differential equations,

A

M+ p,) T + pViu = 0

(7\+;L)dy'+,u\7%=o e (2),

ds
M+p) .+ pVw=0

/

2
where V? = — + (Zy —}— e there being no body force actmg on the matter inside

- dm”
the block. It is required to-find the values of u, v, w at each point, subject to the
condition that the stress across the outer faces « = 4-a, y = 4 b, 2 = 4 ¢ shall be
arbitrarily given at each point—regard being had, of course, to the conditions of rigid
equilibrium of the block.
VOL. CCL—A. K
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66 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

Since LaMEs time the problem has been attacked by a large number of
- mathematicians, among them pE Saimnr-Venant, CresscH, BoussiNesq, and more
recently M. Marnieu, M. Risikre and Mr. J. H. Micaern.  Although they have
not been able so far to obtain the solution of the problem as stated quite generally
above, they have nevertheless made great progress with various particular cases,
wore especially those in which some of the dimensions of the block are large
compared with the rest.

Fuller references to their work and to the results obtained by them are given in
the historical summary at the end of this paper. |

§ 2. Object of the Investigation.

The object of the present investigation is to obtain the solution for the rectangular
parallelopiped under an arbitrary system of surface loading in two cases, when the
problem reduces to one of two dimensions, namely :—

(a) When two of the faces z = 4 ¢ of the bar are constrained to remain plane and
the stress applied to the other faces is independent of z.  In this case w == 0, u and
v are functions of @ and y only. If the breadth 2¢ of the beam be sufficiently large,
we may relinquish the constraint along the sides altogether, and we have thus the
case of a thick plate bent in a plane perpendicular to its own plane. When the plate
is made indefinitely thick we have two-dimensional strain in an infinite elastic solid
with a plane boundary.

(B) When we make the assumption that 2z and 37; vanish at the boundaries z=4-¢,

while zz is actually zero throughout. That this will be very near the truth if cis
very small is quite evident, so that in any case this condition will hold for a flat beam
or girder whose height is large compared with its breadth.*

But it seems not improbable that it may continue to hold approximately up to
a fairly large value of ¢; we may remember that pE SAINT-VENANT, in his solution

for flexure, assumes both 2z and @ to be zero, in the case where his beam is unstressed
except at the ends, and his solution is sufficient to satisfy all conditions. Obviously
vertical pressures and tensions across the faces y = + b must introduce important

stresses :I//Z, so that that part of pE SAINT-VENANTS hypothesis, in the generalised
problem, must go. Still it appears reasonable to suppose, on the whole, that, even
for a beam where ¢ and b are of the same order, we may, as a first approximation,

retain the hypothesis 2z =10. Of course, eventually, as ¢ increases a stress zz must
appear until when ¢ is very large we reach the limiting case of problem (a) when
this stress is sufficient to ensure the vanishing of the displacement w.

~~

If, however, ¢ be not too large, so that we can suppose zz sensibly zero throughout,

* September 13, 1902. I have, since writing the above, verified that a solution for rectangular heams
does exist, which fulfils rigidly these conditions. It is, in fact, identical with part of CLEBsCH’S solution
for a thick plate.
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 67

then the mean values U, V taken across the breadth of the beam of the'displace-
ments %, v in the plane xy are found to satisfy two differential equations of the same
form as the equations of elasticity when the displacements are independent of z
and w = 0, with this change, that the elastic constant A is replaced by another
constant X.  The mean siresses in the plane of xy are found by differentiation from

SN SN A~

U and V by similar formule to those giving wz, yy, ®y in terms of w, v for two-
dimensional strain.

Now the distribution of such mean stresses inside the beam is independent of the
ratio N : pu. This has been shown by Mr. J. H. MicHELL (‘ London Mathematical
Society’s Proceedings,” vol. 31, pp. 100-124). It had been previously pointed out by
StokEs (‘ Phil. Mag.,” Ser. V., vol. 32, p. 503). The equations being of the same form
in problems (A) and (8), there follows this curious result, that the distribution of stress
inside the beam, consequent upon a given distribution of stress upon the upper and
lower faces (this latter distribution being uniform with regard to the breadth of the
beam) is the same when this breadth is very small and when it is very large.

§ 3. Establishment of the Equations.

The centre of the rectangular beam being the origin, let its axis, which is supposed
horizontal, be taken as axis of . The axis of y will be vertical and the axis of z
horizontal. The bounding surfaces of the beam are © = 4 a, y = 4+ 0, z = + c.

Using the notation explained in § 1, equations (2) may be written

daw | dey | dim
WM,
dxz dyz 2 clzz

o+ J +L=0 0 ()

lntegrate equatlons (8) and (4) with regard to z from — ¢ to 4 ¢. Then, noting

that (wz), L1 (yZ)_ 4o are both zero, owing to the surface conditions at the side of
the beam, and also that integration with regard to z and differentiation with regard
to « and y are independent, we find

d te ~ d ¢~
i U—-v xx olz] + ay U—v xy dz] =0,

d +¢ o~ d +¢ o~
o U—c xy dz} + a [Lv Yy dzjl =

¢~ ¢~ +o o~ .
Now if we write r xx dz = 2¢P, r yy dz = 2¢Q, I xy dz = 2¢8S, then P, Q, S

K 2
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68 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

are the mean values of the two tractions and of the shear in the plane xy—taken, for
any values of x, y, across the breadth of the beam. These will in future be referred
to as the mean stresses and often, for shortness, as the stresses.
We obtain, therefore, the equations
dP db ds d Q

(7).

Now consider equations (1), namely,

v = >\<%+%>+ng”+ij N )
=+ ) e (9).
2z = <%+§%>+(}‘+ #)% (10),

oy =w(+ ) (1)

If we integrate (8), (9), and (11) with regard to z from — ¢ to -+ ¢, we have

. av 9 gZU Wi = W_\ .
P=2 <d9 + dd/) +2 L A < 2¢ ) coe e (12)
daUu av Wao — W 0>
Q= A(d%-i-dy)—}- +>\(-—-—-—»20 ),
/dU dv .

1 [+e 1 +e . .
where U = 5;[ udz, V= ?);‘ vdz are the mean displacements in the plane of
L6 ) ¢ P V-

xy taken across the breadth of the beam for any point (x, ). They will be referred
to as the mean displacements. Besides these there is a variable (w,, — w_.)/2¢
which has to be eliminated somehow.

One way of doing this is by integrating (10) in the same way. We obtain

1 r@ dz_)\@U +(§j> 40 +2IL)(_@ _U_)

2 ]

Now if, as explained in the last section, 2 may be treated as small, so that its
mean value across the breadth of the beam may be neglected, we have

Wy — W, Y (dU c._zy>

2¢ D VS "/x, dx dy

Substituting for (w,, — w_,)/2¢, the equations for P and Q become
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U U V
P =\ <(u + ch> T N ¢ )
du av
Q = )\’ <;i9; + ) —' 'U, D S S (16),
where N = 2\u/(A 4+ 2u).  Putting these into (6) and (7), we have
U ot )
N4 <(h + @) FaU=0 . (1),

av’y O —
dy/ + Pv V 0 . B CO . . (18).

(}"‘{'M)JJ(& +
(15), (16), (17), and (18) are preeisely of the same form as the stress-strain relations
and the body equations of equilibrium for two-dimensional elastic strain, with the
exception that N is written for . They will in fact be found to be identical with
the equations satisfied by the displacements of an elastic plate under thrust in its
own plane, as obviously they should be, since, when the beam is made indefinitely
thin, the mean displacements U, V coincide with the actual displacements u, v.

§ 4. General Solution of the Equations wn Arbitrary Functions.

dU

If we write . —+ @ =96, x+w=¢§ x—1y=mn where 1 = /— 1, so that
d . d d d . d d . . .
ot Ty = 2 i and - =ty = 2 a8’ multiply (18) by ¢ and add to (17), we

2( + ) )+ BT + V) =0,

Multiply (18) by 4 and subtract from (17)
dé
2()\’—}—“)&% [LVZ( - 1V)"‘O

But V=4 —— andif T=U 41V, W = U -— vV, then

ifi ’
dU  dv .
§="" f(;; S(U+ V)+ — V)
d'l‘ dW
df
Hence
, {%_W T _

d [/d J_‘ W

O 1) g + 5y ) + 2 iy ="
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70 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

From these, by simple integration,

OV 30 G+ OV ) = 4(8) |
l} where ¢’ (&), x" (n) are arbitrary functions,
J

V4 ”) ~~~~~ OV 3)” 777— =x'(n)

whence
= O =X+ O X ),
N = i WO+ X W) — L (O~ X ),
= 4.1;24 [6 () = &' ()1 + i:w) B+ & M+ . . (19),

W= o o 18 @+ x @) = [ (D —x ]+ G(@) . . (20),

where T (7)), G (€) are again arbitrary functions.
Hence U and V can be found almost immediately. Writing

Fm) = v i, =00),

G &) = 1 o a8 (6) =G (8),
we have
= it 1 X 1 S () = X () B (P () Gu(€)) - (21),
=y X )= = 0 5 (0 )+ (D) + 516, () = Fua)] - (22),

from which we obtain easily

= L L ) X )T+ Gt 8 6) = X))+ G () F k(o)

Q= Gy O F X 0 =, i (87(6) = X () = G (6) — P (o)

S= = S VI O )T E (€)= (1) - i O, (O = (),

and these last may be put into the simpler form

N4u d N+ d .
P (B b e sV g () x )} G () + Fy () - (23)
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Q= (k0 = s ¥ty ) B €)X ()} = 120G () + Fy ()] - (24)

—\F N 42 da 2(>»’+2p)‘/dxdy>‘ XA =R gt 15 - A2%);
A+ 2 N4p db \ d

S = (=30 N 6) F xn)} s 16 (6) + F ) (25),

which have the advantage of not containing imaginaries if ¢ (¢) + x (), G, (€) + F, (n)
are real.

§ 5. Solution wnvolving Hyperbolic and Circular Functions.

Assume now for the arbitrary functions the following typical forms

¢ (¢) = A sin mé + +B cos mé + E cos mé + oF sin m&,
x (7) = A sin my — /B cos my + E cos my — 1F sin my,
G, (¢) = O sin mé + 1D cos mé + G cos m¢ + 1H sin mé,

(
¥, () = C sin my — <D cos my 4 G cos my — ¢H sin my,
so that

¢ (€) + x (n) = 2 sin ma (A cosh my + B sinh my)
~+ 2 cos ma (K cosh my — F sinh my),

¢ (€) — x () = 2¢ cos max (A sinh my + B cosh my)
— 2¢ sin ma (K sinh my — F cosh my),

G, (é) + F, (n) = 2 sin ma (C cosh my 4+ D sinh my)
4+ 2 cos ma (G cosh my — H sinh my),
G, (&) — I, (n) = 2¢ cosma (Csinh my + D cosh my)
— 2¢sin ma (G sinh my — H cosh my).
Whence from (23), (24), (25) we get after some reductions
(8A” + C’) cosh my + (3B’ 4 D’) sin my
L + 2my (A’ sinh my 4+ B’ cosh my)

4 — (3E' 4+ () cosh my + (3F’ 4+ H’) sinh my\[
sin mz
n + 2my (— I sinh my + F’ cosh my)

P = cosmz

(26),

(A’ — ') cosh my 4 (B’ — D’) sinh my
Q = cos mx .
— 2my (A’ sinh my + B’ cosh my)

) — (B — @) cosh my + (F* — H’) sinh my 1 A
+ sin ma N L , oo (27,
{  — 2my(— E'sinh my + F'cosh my) |
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72 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

S o g J (A F @) sinhmy (B + D) coshmy
o + 2my (A’ cosh my + B’ sinh my)

j (' + () sinh my — (H' 4 F') cosh my | |
+ cos mx . . .o (28),
L+ 2my (I cosh my — F’ sinh my)
. rm Mg rm Mt p M Nt g o m Mg
where A'= o ol b Br=0 oo, B =y uie. B F=y oo B

C =2umC, D' = 2umD, G = 2umG, H' = 2pmH, and the expressions for the
mean displacements come out to be

. . 1 (A +3 . . 7
U =sgin max S {7&41—5 (A’ coshmy + B'sinhmy)+ C' coshmy 4D’ smhmy} |
i -+ /1; y (A’ sinh my 4+ B cosh my) .
~+ cos ma i%;, {%:“_3: (E'coshmy —F’sinhmy)+ G’ coshmy —H’ sinhmy} o)
+ % (E’ sinh my — F’ cosh my) '
= cos M = {?ﬁjﬁf‘ (A’sinhmy + B’ coshmy) — C'sinhmy — D’ coshmy }ﬂ
2mp | N+ p
— :“i (A’ cosh my + B’ sinh my)
+ sin ma l :27711# {7-;\;%3: (—E sinhmy+F coshmy)+ G’ sinhmy — H' coshmy } |

| 7 7 (30).
l 1 _/f (E/ cosh my — F’ sinh Wby)

§ 6. Determination of the Arbitrary Constants from the Stress Conditions over the
Faces y = + b.

We shall suppose that the mean stresses Q and S are given arbitrarily over
the top and bottom surfaces y = 4+ 0. Expanding these in Fourier series, we
have, say :

[Qly—1s = g + S, cos max -+ Sy, sin muc
[Ql—— = By + =B, cos ma + =3, sin ma
[Sly—1s = {, + =L, cos mx - Sk, sin max
[S]—s = 0, + =0, cos mx + v, sin mx

(31),

where a,, B4, Yu> Ony Luy Ony Kuy v, are known constants, and m = nw/a where 7 1s any
positive integer.
Now, if we take expressions (27) and (28) and equate them, for y = 4 b, to the
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 73

expressions (31), we obtain eight typical equations for the constants which, when
combined in pairs, may be written in the simpler form :

(A’ — ) cosh mb — 2mb A’ sinh mb = ﬁzz_‘g,@; 1
- (32),
(A" + ') sinh mb + 2mb A’ cosh mb = 51&; Vn
(B" — D) sinh mb — 2mb B cosh mb = ?"—L—-;ﬂ“
R T )
(B’ -+ D) cosh mb + 2mb B’ sinh mb = ’ﬁ%_%i Vi
(B — G') coshmb — 2mb E sinh mb = — 7—"——24;@-” ,
‘ > (34),
(B 4 @) sinh mb + 2mb K/ cosh mb = L '2" 0.
(F" — H') sinh mb — 2mb ¥’ cosh mb = 775:21-6’?
s .. . . (35)
(F'+ H’) cosh mb + 2mb ¥’ sinh b = — ?L“t O, : .

These equations solve in pairs. We find easily

, o, + B sinh mb Ky =— Uy cosh mb (3
A 2 sinh 2mbd 4 2mb + 2 sinh 2mb+ 2mb ( ) ’
o = ,“,'.l.,+,v./6?l sikp‘h f/w gg@} »mb Ky =— Uy posh mb — 2mb sinh m_b ( 37)
- 2 sinh 2mbd + 2mb 2 sinh 2mb -+ 2mb ’ ’
poe = By coshmb gt  sinhmb :
B'= 2 sinh 2mb — 2mb 2 sinh 2mb —2mbd ~ ¢ (38),
, o, — 3, cosh mb + 2mb sinh mb #, + v, sinh mb — 2md cosh mb
D 2 sinh 2mb — 2mb + 2 sinh 2mb — 2mb (3 )’
= — 7 + 3, sinhmb & —0, cosh mb (40)
T 2 sinh 2mb + 2mb 2  sinh2mb+2md" °~ 7 ?
Q= v, + 98, sinh md + 2mb cosh mb ;,,ﬁ—- 4, cosh ,,mb — 2mb sinh mb ( 4 1)
- 2 sinh 2mb + 2md 2 sinh 2mb + 2mb ’
) Y~ O _coshmb & +0,  simhwb
F = 2 sinh 2mb — 2mb 2 gsinh 2mb — 2mb =~ 7 (42)’
' — ¥, — O, cosh mb + 2mb sinh mb &, + 0, sinh mb — 2mb cosh mb ( 4 3)
- 2 ginh 2mb — 2mb 2 sinh 2mb — 2mb P

where in the above n corresponds to a positive integer.
The case where n = 0 has to be investigated separately.
VOL. CCL—A, I '
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74 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

§ 7. Expressions for the Displacements and Stresses.

Substituting the values of the constants found above into the equations (26)-(30),
we obtain for the mean displacements U, V and for the mean stresses, P, Q, S the
following values, in so far as we merely consider the terms corresponding to 7= a
positive integer :—

sinh mb — l md cosh mbl

a 1
“n"" n <

/
+ (k4 — vy) {(7\—,:1;— + —1«> cosh mb — _L md sinh mb}
I B R I L eodl .
U= % 2m (sinh 2mb + 2mb) COSRLTIY S e

(e — Ba) { 1 cosh mb — 1 mb sinh mb}
’ Y ©

"

+ (K0 + v) l[ w-»l—w + i> sinh mb — L mb cosh mb}

I s sinma
= ] (5 ma
+ 21: 2m (smh 2mb — 2mb) S vy s
® [a, + B sinh mb Ky — Uy cosh mb . .
: . inh my st
+ 21 { 2  sinh 2mb + 2mb + 2u sinh 2mb + 2mb g smivmy sim me
@ — B. cosh md Ku + V, sinh mb .
+ 21: { 2u  sinh 2mb — 2mb + 2u sinh 2mb — 2mb y cosh amy sin ma
— (2 + &) {——1———~ sinh mb — r mb cosh m?)}
+ p Iz
+ (& — 6.) {<7\’ L + L ) cosh mb — —1 md sinh 7)17)} \
p 7
= — : = cosh my cos ma
+ % 2m (Smh 2mb 4 2mb) coshmy
— (v — 8.) { y L sh b — Lmb sinh mb}
Nt p Iz
1 1\ . 1
+ &+ 0)——+ ——) sinh md — = mb cosh mb
-+ § = M om —rsinh MY COS MT
! 2m (sinh 2mb — 2mb) :
2 =y, + 8 sinh mb (& — 6,) cosh mb
+ % { 2u sinh 2mb 4+ 2mb + 2u  sinh 2mb + b | Y sinh g cos m

i g {—— (Yn—64) cosh mb + & + 0,,) sinh mb
1

S S ma 44).
2p sinh 2mb — 2mb sinh 2mb — 27311)} Y cosh iy Cos ( )
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 75

(a” + ;8)1){( —~1—~ + ~1—> sinh md + b cosh mb}
" [

l
|
| 1 mb |
‘ + (k4 —vu)3 ., coshmb 4+ — sinh mb

e N |

V= % 2m (sinh 2mb + 2mb) sinh my cos ma
- \ “
L (o — Bu){(ﬁ-»l» + ! \)Cosh mb + o sinh mb} ‘3
- Mt p w |
. (/{n + v”){ ! sinh mb + —— (,osh mb} .
i I —— g £ | cosh my cos mux
1 2m (smh 2mb — ‘?mb)
2 fan + 6” ___sinh mb Ky — Vi cosh I»{L!A)___ ’
- ? { 2;1, sinh 2mb -+ 2mb + 2u  sinh 2mb + 2mb}‘/ cosh my cos ma
2 [an—= B cosh mb Ky + Uy sinh mb . ,
- ? { 2 sinh 2mb — 2mb + - 2u  sinh 2mb — me}y sinh my cos ma
} (v, + S,L){<-L + 1> sinh mb + '~n~b cosh mb}
+ I
) . — (G~ 9,]){"———_"“‘ L mb}
+ 3 L + : sinh my sin m
1 m (smh 2mb + ‘7mb)
P / 1\
- (Y 8,0{(» o ) cosh mb + smh mb}
| A M
|
1 — (& + 9,,){Smhﬁl~b - 27—[) cosh’ mb}
o - - ll’ v .
+ ? 2m (sinh 2md — 2mb) cosh any sinh miz
» Vo + §,€ B sinhﬁzb A ¢ — 8, cosh mb
+ % { 2u  sinh 2md + 2md + 2 sinh 2mb + 2mb y cosh uny sin
2 Yo — S coshmd &+ 6, sinh mb .
+2 { S sh 2mb — I T 2 sinh b — 2p [¥ SD Y sinm
(45).
.+ B,) (sinh mb — mb cosh mb) + (k, — v,) (2 cosh mb — mb sinh mb
P = 2 (2 + Bo) (51 - Sinh ;mb <_/: QmZ ) ) cosh my Cos Mx
45 3 (aw — Bu) (cosh mb — mb sinsl'iln')ﬁb;]:b (%0 ;—nzu)@ sinh mb — mb cosh mb) sinh my cos ma
) mb —
® gqn + @,)ﬁsjnrl} ?Ebjl‘ (1, — — V,L> cosh mb 1 X
+ 21: sinh 2mb + 2mb ~my sinh my cos m

+ § @%_: ,L) cosh mb + (e + yn) smh mb
sinh 2mb — 2mb
+ 6,) (sinh mb — mb.cosh mb) — (&, — 6,) (2 cosh md — mb sinh mb)
sinh 2mb + 2mbd
L 2

my cosh my cos ma

+ § (v»

cosh my sin mzx
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76 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A
§ (vw — 8,) (cosh mb — mb Sinh. nb) — (&, :+~ 8,) (2 sinh mb — b cosh md) sinh my < ma
1 sinh 2mb — 2mb

+
2 (. + 8,) sinh mb — (&, — 0,) cosh mb . .
(o 8) sinhond — (6= B) coshmd
-+ > sinls 2 -+ 2mb my sinh my sin mx
+

§<‘Y!{f‘ 8,) cosh mb — (&, + €,) sinh mb
1 sinh 2mb — 2mb

my cosh my sin me . . . . . . (46).

# (e, + B (sinh b 4 b cosh mb) + (x, — vy) mb sinh b
Q _— 2 »(»‘—Z—Lr— SN @Q,{_m,, R — _,A..-!T"_‘,,, S — ? - ( J%,, ,A,.,Z> S COSll r))'l/y COS }72:1:
1 sinh 2mb + 2md

(o, — B.) (cosh mb -+ mb sinh md) + (%, + v,) wb coshomb .
B SO A T T LT S ginh my cos ma
+ 21: ginh 2mb — 2mb Yy

= (e + B,) sinh b + (k, — v,y cosh mib .
— 3 S T SR Sy sinh my cos ma
% sinh 2mdb + 2md Y Y 4

my cosh my cos max

A g(a,, — B.) cosh mb + (x, + »,) sinh ind
1 sinh 2mb — 2mb

2 (v 4 8,) (sinh mb + mb cosh mb) — (§, — 6,) mb sinh mb

+ 1 sinh 2mb + 2mb COSTL vy St i
2 (w = §,) (cosh b + mb sinh mb) — (&, + 0,) mbcoshmb . . .
+ §li Sk Sh — 9 sinh my sin max

2 (o, + 8,) sinh mb — (&, — 6,) cosh mb . .
—2 T - = my sinh my sin ma
21: sinh 2mbd + 2mb J 4

3 (vu = 8) coshmd = (§, + 6,) sinh mb
1

: : my cosh my sin mx c . (47).
sinh 2mb — 2mdb Y Y . ( )

& — (e, + mb cosh*md + (&, — v,) (cosh mb — mb sinh md) . .
S =3 (2 + B2) ) (o= 1) ( — ) inh my sin
1 sinh 2mbd 4+ 2mb ¢
5 = (o, — B,) mb sinh mb + («, + v,) (sinh mb — b cosh mb) .
‘{ it i it n ‘h . .
: cosh my sin mx
- T sinhy 2mb — 2mb ¥
2 (e, + B,) sinh mb + (k,, -~ v,) cosh mb .
p —— ‘ my cosh my sin. max
+ 1 sinh 2mb 4 2mb Y Y
+ § (a, ~— B,) cosh md + (x, + v,) sinh md mr sinh 7 s m
. sinh B IIHe
1 sinh 2mbd — 2mb Y Y
» (o, -+ 0,) mb cosh mb + (&, — 6,) (cosh mb — mb sinh mb) .
+ = (. 0) + {6 — 0 ( ) sinh my cos mwx
1 sinh 2mb -+ 2mb
@ (v, — 0,) mb sinh mb + (&, -+ 60,) (sinh mb — mb cosh md
432 ) b 8 . (é:" ' }1“< ) osh My cos mi
1 sinh 2mb -~ 2mb
LSy 8,) sinh mb + (&, — 0,) cosh mb - b .
T my cosh my cos m
L. sinh 2mb -+ 2mb v Y
@ — (v, — 8,) cosh mb + (&, + 6,) sinh md . ,
— : my sinh my cos max . . . . . (48).
+ % sinh 2mb — 2mb Y Y { )
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 77

§ 8. Conditions at the Two Ends x = 4+ a.

Tt is, however, impossible to satisfy fully the conditions over the two ends
@ = 4 a. These would require that P and S should have given values over these
ends. If, however, o is so large that, at a long distance from the ends, the effect
of any self-equilibrating system of stress over these same ends may be neglected,
then we need only consider total terminal conditions at x = 4 «a.

These conditions will involve

b
(i.) The total tension T :J‘ P dy across either end.

4
(i1.) The total shear S = { S dy across either end.
J—-b
b
(iii.) The bending moment M = — Lbe dy across either end.

I now propose to calculate the uantities T, S and M for that part of the
solution which has been given in the last section.
I find, after reduction,

(Dee= (D=3 g =) o (a0)
(S'>¢¢=(S)_¢¢=%(}’7z-8;;) oon .. e e (50).

- (M), = — (M)_,= 5 (ﬁ-ilg”) cos ma -+ 2 — (K,L + »,) cos ma . (51).

Now we can always adjust M and T so as to be zero, for the solutions for a
unitform tension and a uni 1

o 3May I
U=%%~ wn | \
P (52)
vty M =]
T 2E T 2E 2 J
(where 7 = — JN/(A =+ p) and E is Yound’s Modulus), produce no stress across the

faces y = 4 b, and therefore such solutions can always be arbitrarily superimposed.
They correspond to stresses which are transmitted from the ends; and we shall find
that it is necessary, in various cases, to add such solutions in order to satisfy the
end conditions, which are not necessarily satistied by the series merely mvolvmgg
circular functions.
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78 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

§9. Part of the Solutions Corresponding to the Terms ay, By, Lo 0O

In the first place it is obvious, having regard to the conditions of rigid equilibrium,
that if the ends @ = + a are free from stress, then ay must = 8, If a; B, we
must have a shear over the two ends in order to balance the excess of the pressure
on the one side over the pressure on the other side, and this will require special
investigation. The solution arising from such conditions is discussed in §§ 89-40.
For the present let us confine ourselves to ey = B, This corresponds to a uniform
traction along the axis v and introduces the following additional terms :—

U ="", V — 0.‘0?/.[
TR TR

| | f (53).
P =0, Q= ay, S=0 ]

Now tm‘ning to the terms in {, and 6, it is easy to verify that the additional
terms
BN+

) — 7\’/ + 2 (.,2 2

T 16p (N + w)

N N
= v G0y
and therefore

Q —_ 0; P —_ é‘n_‘ -QQ(IJ S — C()‘“_,?()y

satisfy the conditions that S shall have constant values over the two boundaries
y = 4 b, these values being equal in magnitude and opposite in sign. The effect of
these shears is balanced by the pressure and tension (£, — 6,) @/2b over the two ends,
and the conditions of rigid equilibrium are satisfied.

Finally, if we have equal shears over the boundaries, the sign being the same (so
that the external impressed forces act in opposite directions), the solution

) 1 } 1
U= du (Co + 00) Y, v 4#» (CU + 00) x
P =0, Q =0, Sz%(é¢)+60)

(55)

will satisty all conditions over the boundaries y = 4- b, and will introduce over the
boundaries ® = 4 @ a system of shear necessary to maintain rigid equilibrium.
Adding together the solutions (54) and (55), we find that the conditions @ = 0
over y = + b, S = {,over y = + b, S = 0, over y = — b are all satisfied.
This completes the solution of the problem proposed, with the exception of the case
ay == By, which can be reduced to the problem of a beam uniformly loaded along the
top and free along the bottom, the load being taken by shears over the ends.
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 79

PART IL

DiscusstoN oF THE GENERAL SOLUTION WHEN THE FORCES oN THE BraM ARE
PureLY NORMAL AND ARE SYMMETRICAL ABOUT & = 0.

§ 10. Bapressions for the Stresses and Displacements.

If the forces are purely normal, and if the solution is to be even in w, then the
¥, 8, , 0, , v terms disappear.

Further, we have the additional condition that, over the ends x = 4+ a, T = 0,
S=0,M=0; by introducing suitable terms of the form (52) we can satisfy this
last condition, and we finally obtain

_mar 5@7/ cos ma
U= E 20K 7 2 (o= B.) m?

( 1 smh mb — i md cosh mb

A (“/L + BH) \}\" M .
+ 2{ 2m sinh 2mb + 2mb cosh vy S e
C1 1
o (0 — B \N < S COSh mh — " mb sinh md
+ % 2m sinh 2mb — 2mb =" sinh Yy sm e
4 % (e + B.) y sinh mb sinh my sin ma + 2 (e — B,) y cosh b cosh my sin mz
1 24 sinh 2mb + 2mb o sinh 2mb — 2mb

- (96),

m?

. {<~, L. + £> sinh mb + E mb cosh mb}
§ o + B\ B A opu K/ A |
1 2m ) sinh 2mbd + 2md

L ey B [T cos
V = &% < — ") 3 (o — B, B
£ + IR 2 1 ( ) IB)

.

sinh my cos mi

-+

{( /j -+ _1-> cosh mbd + ]« mb sinh mb}
§ (“n - /8”ll> ‘X + Il ﬂ' e /'(' e
1

: - cosh ‘my cos max
2m sinh 2mbd — 2mb Y

8

3 @y + ,8@\ y sinh mb cosh my cos mz § < a, — 3.\ y cosh mb sinh my cos max
1 2

2u ) sinh 2mbd + 2mb - ) ginh 2mb — 2mb

where B is an arbitrary constant to be determined from some condition of fixing. It
merely corresponds to a total vertical displacement of the beam.

) cos mfc o, -+ :8 ) smh mb — mb cosh mb ! B
- CoSn MYy cos ma
Fu “ sinh 2mb + 2mb 3/

cosh mbd — mb sinh wzb

ol/
P=—p2la—4

g n/,,

+ s (@, — B.) sinh my cos mx > (57),
1

sinh 2mb — 2mb

sy sinh mb sinh my cos ma
sinh 2mb + 2mb

B,) my/ cosh mb cosh my cos ma
" sinh 2mb — 2mb y

+ (o‘n + Bﬂ) + 2 (OC,L
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80 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

sinh mb + mb cosh mb
sinh 2mb + 2mb

Q:ao_l_?(an""ﬁn)

my sinh mb sinh my cos ma
sinh 2mb + 2mb

cosh my cos ma

- ( « /8/')

® cosh mb + mb sinh mb
+ % (e, —B.) sinh 2mb — 2mb sinh my cos m

g 8 my cosh b cosh my cos ma r (37)'
1 (et ~ "> sinh 2mb — 2mb

mb cosh mb sinh my sin ma
sinh 2mb + 2mb

mb sinh mb cosh my sin ma:

=3 (s, — 5)" o e

sinh 2mb — 2mb

S:——%(an—l—ﬁﬂ)

+ § ( 18 ) my sinh mb coshmy sinmz % ( e ) my cosh md sinh my sin ma
o s R At o — A d
A g sinh 2md + 2mb P ! sinh 2mb — 2mb

§ 11. Approwmate Values to which the Kapressions of § 10 lead when “ 0" s made
very small.

If b is very small compared with @, so that, even for certain fairly high values of m,
mb 1s still small, we may expand the coefficients in (56) and (57) in powers of mb,
and also we may expand cosh my and sinh my in powers of my. This is the method
which has been employed by Pocmmammer (‘Crelle’s Journal) vol. 81). 1 have
shown in a previous paper (¢ On the Elastic Equilibrium of Circular Cylinders under
Certain Practical Systems of Load,” ¢ Phil. Trans.,” A, vol. 198, pp. 147-233), that
such an approximation was valid provided that the original series and each of the
approximate series obtained from the various terms in the expansion of the coefficients
of cos mx, sin max (which expansion is supposed carried out only to a limited number
of terms) are absolutely and uniformly convergent for the region considered.

Agsuming that the values of a,, 8, are such as to ensure that these cond.itions are
satisfied, let us see what happens when, in the expressions for the displacements
U and V, we neglect all terms of order greater than — 1 in m.

We find
3:07/ COS M@ 3 1 LN\ a4+ By
U= — R S (o, — fB,) — + %(7\’ P #) F sin ma

1/ mAb? I
{1+ TomAh? , .
ga—B WHn\"" 2/ p [y LM
1

+ Y (1 + ~b/ sin
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 81

oo ) cos Mma N © o, + B

— B,

1 m* Su(N 4w T m

1 1 oy o o, — R,
+ < -+ ) YT po — sin ma

1 m

sin max

H

3)\1 + 4:/1, ?/ 77\.' + 4/11 } D, oy - Bﬂ
m

+ = 3 {GM(N'+M) T T0u (v + 0 ? ‘sinmx. . . . . (58).

9

0
3 2 =yt 2 Cos (en = B2) y* cos ma
V= 5 (o 2
208E 2 1 (% = Ba) =, m? 2 Am2P

1 1 mA* 1
. 14+ 20N 2 g
(an~—/3u)<7t'+# #>( 2> a

£ <1 - Zn—g/:> cos Mx
27,2 ¢
2m st <1 m2h ) 2
‘ 15}

22

3

A o8 'ma
=wE oz TR T <

3 [ 18V + 16s \ ﬂ”} [CD
T8 {10;4,(7\,’-*-#) 20 (N + p) B Eeosme. .. L . (59).

1 0
> —~ cos mx

m“’

Now 3 (@ — B.)cos mx = L, where L is the difference of stress on the top and
1

bottom, in other words, the transverse load per unit length of the beam.

2B gin o = [ Lde = [ Lde = — S,

1
where S is the total shear at any section.

— Pn B

cos map — 3 =P
1

3, o “cosmo = jx'Scla: = — M,
1 3

where M is the bending moment at any section.
Integrating again :
B

&
5 COS M = w= J Mdex
" 0

© g,
2‘.—"—gﬁ-smfmac--«acE*w
m

1

m* 1

§ ey — B, — § oy _‘LBnCOSwa — _af_ % MCOS MO == == j (j’ de>d.ﬂo
) L 2 m? 0
+B

Also if Q) is the transverse tensile stress at any section @ = 3
i

S B" sin ma = j Qdz.
1 0

cos mx, and

Substituting from the above values into the expressions (58) and (59) for U and V,
1 1 4 o M/

X’+M+ & nd’l] == )\/()\ +2}L),

VOL. COL—A. M

we find, remembering that
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82 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A
== 2 (M — SN qdp VA ] (@ )
U= 2b3E 4( M S {6;1. N+ p) B? 10 (N + ,u) + E onm l

(60),

3 o SM [ 13\ + 16u Vo
V= 263Eijd T8 {10;5(7»’—!-#) 2M(x'+m

IQ
ol
—

J

k_‘—""“Y"

dropping a constant in V.

The stresses P, Q, S might be directly deduced from the equations (60) by
differentiation. But here we require to be extremely careful, for, 4 and « being of
different orders of magnitude, differentiation with regard to # will not give a term of
the same order as differentiation with regard to w. The criterion to be used in this

case is this: The series L = — dS/dx is of order 0 in m, and is therefore among the
terms which we have agreed to neglect. Similarly for the series Q. In consequence,

every time L and Q appear owing to differentiation, they should be neglected if we
keep the same order of approximation for the stresses as for the displacements. Tt
will then be found that some terms disappear whose effect 1s felt in the displacements,
as it were, by accumulation.
Keeping this rule in mind, we obtain easily
_ My
P=— o
Q=0

8= 80—

(61).

| S —

Now these are the stresses we should have obtained had we treated that part of the

bar as free, but subject to a bending moment M and a total shear S, transmitted
from a distant terminal. Hence we see that, to a first approximation the stress at
each point of a bar, whatever the manner of its transverse loading, depends only upon
the total bending moment at the section and upon the total shear at the section, and
will be given in terms of these by the same formule which are valid for a free bar
subjected to a given couple and shear at its extremities. Similar conclusions follow
from the formule found by Professor PocnmaMMER in the paper quoted previously.

§ 12. Analysis of the Approzimate Expressions for the Displacements.
Shearing Deflection.

Now if we look at the values (60) we see easily that they are composed of' three
parts.

(i.) The parts — [Mdvc of U and — ‘)bsh LKMCM of V.

2b3E

These are what we may call the ¢ Euler-Bernoulli” terms. They correspond to a
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 83

strain in which cross-sections originally plane remain plane, and the curvature of the
elastic line is at all points proportional to the bending moment.

(ii.) The pa,lt'[ g da of U. This corresponds to the lateral contraction of the

material under tensions Q, and is the same as if each strip of thickness dx and height
2b were independently stretched.

ms 4 g [N A TV A A
| (iti.) The terms % S {6,@(%'+M) P 10p v + )} of U and
SM [ 18N + 16u Az
8 {10//«@’ S TY ) b°} of V.

These correspond to a distortion of the cross-sections and to a parabolic distribution
of shear.

In the particular case, where the load reduces to a central isolated weight W and
the two symmetrical support reactions, the additional terms (iii.) in V are of the
form (omitting the constant)

o Wz [13X' 4 16u W (I — )3
[ R R 3
{20(7\.'+/L)}+ mp fore>0
13N + 16p AW (l + z)9*
__i it Mt i Bl
and S {20@ n )} T8 fore <o,

21 being the distance between the supports.

It might have been supposed that this particular problem would have been
capable of solution by breaking up the beam in the middle and treating it as two
inverted cantilevers, to each of which we could apply DE SAINT-VENANTS solution.
This, T believe, is often done by engineers.

Now such an attempt is, in strictness, bound to fail, because DE SAINT-VENANT'S
solution implies distortion of the cross-section at the fixed end, whereas in the
present problem the central cross-section of the beam must necessarily remain
plane, from symmetry.

Moreover, we are left in doubt as to the condition of fixing to be adopted Are
we to suppose, with DE SAINT-VENANT, the central element of the terminal cross-
section to remain vertical, or, with Professor Love (‘Theory of Elasticity, vol. 1,
pp- 179-180), the elastic line to be horizontal at the built-in end ? In the case of a
cantilever the difference is quite immaterial, as it merely amounts to a rigid body
displacement. But here we must remember the cantilevers are only fictitiously
severed, and the above difference corresponds to an actual sharp bend of the beam
in the middle.

Tt is interesting to compare the true solution with those obtained in this way.

M 2
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84 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A
If we assume DE SAINT-VENANT'S fixing condition, we find, for the additional
terms in V corresponding to (iii.),

s W2 4 W(Zﬂfbrm,\ao,and

g ) |7 e
Wz ., W (42

The * terms are therefore identical in this and in the true solution, but the first
term which represents the additional deflection of the central axis of the beam, and
which is sometimes spoken of as the shearing deflection, is less than in the true
solution, being (13N + 16u)/20 (N 4 w), that is (42N 4 32u)/(60N + 40u) of that
given by the double cantilever solution. This fraction comes to be *74 for uni-con-
stant isotropy.

If we assume what I have called Love’s fixing condition, the shearing deflection
disappears entirely.

The true solution shows us, therefore, that it is permissible in this case to use the
double cantilever as an artifice to obtain the solution, provided we adopt, at the
section of fictitious severance, a fixing condition intermediate between those of Love
and DE SAINT-VENANT, but nearer to the latter. In other words, a central isolated
load does actually introduce a sharp bend.

§ 18. Value of the Deflection when b s not small and the Beam is Doubly
Supported.

Suppose the beam rests on two knife-edge supports A, B (fig. i.) at a distance 2]
apart, and a weight W is borne by another knife-edge which presses on the upper
part of the beam at C.

D1 N
(o]
T 2a
K m J:_Q:‘ ***************************************************** >4
X -
A Ay
w¥
Fig. 1.
W W W narl
Then we have o, = — Dy = (n 5 0), By = ay, By = — oocos

The central deflection of the elastic line (what pm SamNT-VENANT calls “la
flecche de flexion”) is then given by J="Vary_g— Vegy_o; substituting for «'s
and B's in (56), we find
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3 3 cosnar W < narl >

f:: 4BPE 7 mt o« 0087_1

\

{( Lo by o mp +™2 sinh i

© W ’ 7 1 }\'7 “) cosh . —Tosimnn om

+27<Cos7%—1>~— LY . <cosL—-1> (62).
1 @

J 2m sinh 2mb — 2mb
. 3 W A
Now the first term can be evaluated. It is - T We have therefore
1 nmwd 1/ nwbd | nwh mrb)
SWE 2 W <k, - cosh I-—F;(\ cosh -{-— sinh p > ( "77Z>2
T 1—cos o

S =150 T 20m [ onmh 2717rb \
Ksmh ‘T— P )

Now let us remove the ends to infinity, that is, make a very large. This will
transform the % above into a definite integral. It is easily seen that the term under
the 3 remains finite and continuous when 7 is made zero; we may therefore take
our limits from 0 to . We then obtain, putting nwb/a = u, wbja = du :

"l ot + sind ‘
f _ S )X -N+f,‘ P cosh & -+ P S1n 1? <1 o 15{\%2/{{,

o 2 sinh 22 — 2u ' b/ X
v ! U .
. ,cosmo»{-”bmxw ;
WY E n /. wl\tdu
= = (sin “2) 2,
T Jo sinh 2w — 2u %) u
\

or writing 1/20 = A,

© (Lu“co?l}ww | w‘ sinh u>
2W B p ) fsiman\t )
f—w@0§-m~ v (““wmty...ma

T sinh 20 — 2u ul,

Now (sin uk,/uy)t is always < 1, so that

T s cosh g S
)\V I > g D we cosh 1 - L
< s <2b 0

sinh 2w — 2u
and f tends to become equal to the right-hand side of the last written inequality
if 1/2b becomes small, that is, if we make our supports close up.

© .3 . » 4
. w® cosh u du wt sinh u du
The integrals ( S, Al ( — ——— when calculated by quadratures
Jo sinh 2w — 2u 0 sinh 2w — 2u

come out to be equal to 7-22 and 2482 respuotxvely.

2W /1N /289 2483
) ()

We have therefore J<— i .
M

(64).
Now if f; be the Fuler-Bernoulli deflection, that is, the deflection calculated in
the usual way by taking the curvature proportional to the bending moment and
fixing, so that the elastic line is horizontal at the origin,
Wi ' .

Comparing (64) and (65) we see that the true deflection will certainly be less than

T
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86 MR. L. N. G. FILON ON AN APPROXIMATI SOLUTION FOR BENDING A

the Euler-Bernoulli deflection if / (28 9 -Jf - 24 8) < 2ab; or, I <0690, if for pur-

poses of numerical calculation we suppose uni-constant isotropy and therefore
E = 5pu/2.

So that if { be less than about 3%th of the height of the beam, the correction to
be applied to the Fuler-Bernoulli deflection becomes negative. The eritical point
where, as we shorten the span, the correction passes from additive to subtractive
corresponds to £ slightly, but only very slightly, greater than 0690, as in the
neighbourhood of this value A, is quite sufficiently small to make (sin ulj/ul)* =1,
a fair approximation for all the most important part of the range of integration
of the integral in (63).

We see therefore that when we have a beam loaded in this way, with a section
of symmetry constrained to remain plane, the deflection at the centre, for all spans
greater than 3'5th of the height, is larger than the one indicated by the Euler-
Bernoulli theory. In the limit when the span is made very large, this additive
correction is found to be of the same form as that given by pE SainT-VENANT for
a cantilever under special conditions of end fixing, but the coeflicient is different,
the correction being just under $ths of pE SAINT-VENANT'S value. For spans smaller
than 4gth of the height the correction is negative.

§ 14. The Doubly-supported Beam under Central Load. Expressions jfor the Strains
and Stresses when we remove the Supports to the Two Extremities.

Going back to the general expressions for U, V, P, Q, S given in § 10, if we have
a beam as in § 13, but we make the two supports coincide with z = + «, we have

W W ‘V
aO:BO:M?{;’ =0 p= = (=) @
with the following values for the displacements and stresses :—
T YW sinh Oawbje IR
U= w > o sinh dnmbja + dumlja sin 2nwa/a sinh 2nwy/a
Y W % cosh (2n + 1) wd/a

A N - 2 h ),
w o 3 sinh (dn + 2)mbja — (dn £ 2) 7b sin (20 + 1) w/o cosh (2n 4 1) wy/a

[l 1 cosh 2n+1)mh/a }

?»’7—{—/
W i(2n+ 1)t sinh (2n+ 1) wbja |
» a B |
——3 > Gt 1)) shih (o & %) w8 = (dn & 2) e /sm(Z)H— 1)mxjasinh (204 1) 7y/a

1 1 2nah
W 5 a ()d a sinh 2narb/a — " cosh 27wrb/a>

a T onm sinh dumbja + 4 m—b 7 - sin 2naw/a cosh 2nay/a

3We 1 Wz

nyo(2n+1~)2_‘72‘E‘C;. Coe s, (66).
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_yW = sinh 2nab/a
pe 1 sinh4nmbja + dnmdja

cos 2narx/u cosh 2nary/a

yW = cosh (2n + 1) 7b/a
ue o sinh (4n + ¢ 2)mbja — (4n + 2) wb/a

cos (2n + 1) mx/a sinh (2n + 1) my/o

/
(—~1~~~ + 1> sinh 2nwbd/a + 1 2nmd cosh 2nmbja
Wg o Nhn b2 9nm/a sinh 2
a 1 2nmw sinh 4nmb/a + 4nwbfa cos Znmz/a sinh Inmy/a
11 — -
<—,~— + —> cosh 2n+ 1arb/a
+tuoop
1 20+ imrh

W g " o 571- sinh 2n+17rb/a

T W Y @ntlymw sinh (dn+ 2)wbja — (An+ 2) wbja OO (2+1) e cosh (2n+-1) my/a
Wa 2 1 Wy

3 RS- A < S A /4

+ 2E637r9(m W>%(2n+1)2 B o (6T),

where B is a constant depending on the origin from which the displacement is to be
measured.

3yWa = 1
Ba® 5 (20 + 1)

2W sinh 2nwb/a — (2nb/a) cosh 2nwb/a
a sinh 4nmb/a + dnmbja

2W (2nmy/a) sinh 2narb/a . _
~ 7 & sinh dparbla + dnarbjo cos 2"’”96/ a sinh 2nay/a

P=—

|
~ M8

cos 2nwa/a cosh 2nmy/a

Ms

% 2W cosh ‘7n+1 whla — (?n+ 1arbja) sinh 2n+17rb/a T AR
— & A 2
% " sinh (dn + 2) mbja — (4n + 2)71,/66 cos 2n-lmx/a sinh 2n+41my/a
OW  (@nt lmyla) cosh Sn-t ind/ — —
g 2V n+1myja) cosh 2n+1mwbjo v ,
— % o cinh (0 4 2) mhj — (4n+2)7rb/ cos 2n-t1mz/a cosh 2n+4-1ay/a . . . (68).
_ W § 2W sinh 2narb/a + (2nmb/a) cosh 2nmrb/a 9 b9
- % ) sinh 4nwbja + 4dnmb/a cos nﬂ-m/ @ cosh 72773// @

& 2W (2nry/a) sinh 2nmbja o
+ EI: « sinh 4nmd/a + dnmd/a cos Znm/a sinh 2nwy /o
= 2W cosh sh 2n+4 lwb/a + (2n+ 17r7)/a) sinh 27z+ 17r7)/a

«a

CN

cos 2n-4 17790/0& sinh 2n+ lmy/a
sinh 4n 4 27rb/a: - 4n+ 2mb/a

P ST
4 § 2W @netImyfa) cosh 2n+ 1mbja

0o @

TN PN
et o cos 2n-1wx/a cosh 2n+1my/a . . . . (69).
sinh 4n+ 2mb/a—4n + 27b/a
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88 MR. L. N. (. FILON. ON AN APPROXIMATE SOLUTION FOR BENDING A
2 2W (2awb/a) cosh 2nnbja . . ‘
S = 21‘, o sinh dnmbja + dnbf P onaafo sinh 2nmy/a

3 2W (2nmy/a) sinh 2nrb/a

. sin 2arx/a cosh 2nwy /o
1 o sinh dnwb/o + dnmb/a T/ Yy

+ % 2w (2n+ 17rb/a) sinh 21Hﬁ lfrrb/a

0

P sin 277,—{- B m/a cosh ?n—{— 1777//(4
sinh 4n 4+ 27h/a ~ It Qb

§ 2W (2n+ i7rg//c¢) cosh 2%«}- Lo/

o

sin é;--i—\lww/asi‘nh ‘277,-{?1773//66 coe . (70).

TN TN
sinh 4n 4 27h/a — 4n -+ 2rD/a

§ 15, Definite Integrals to which the exp-ressions of the last Section tend when we

54

make " wery large.

It we make o very large, the ¥’s in the preceding expressions will become integrals
in the limit. It will be found, however, that certain terms in the last found values
of U, V, P, Q, S become infinite when 0 is substituted for b/a. In these cases the
sum may not be directly transformed into an integral. The reason why this occurs
is that, if @ be made infinite, an infinite bending moment +Wa is introduced at the
centre of the beam. It is this moment which produces the parts of the displacements
and stresses that become infinite when o is infinite. If; however, we apply at the
two ends pure couples — W, we get rid of this infinite moment, and we have only
the terms due to the local effect, which produces only finite stresses at a finite
distance from the origin.

yW3ogl  wa? W 1 aya®
Thus, if in U we add PEE N YCE o to the second ¥ and i i Gt 1

to the third ¥, these Zs remain finite even when we make a=o. We have,
however, to introduce negative ‘oermq 'to balance those that have been added.

/
Remembering that Kh"j— ] \ = 2 and 3 > = 7%/8, we see that the part of

b S (9 + 1)'

. . T W
the series in U which becomes 1nﬁmte, 18 — & T%—q which, added to the other infinite

term in the last line of (66), gives for the infinite part of U':
- 5 7yWa
IJO = ié E1‘7’3 ’
Similarly with V. The terms which have to be added to the second and fourth s
to make them finite in the limit are

3*W 2 a
T dpa Y a1t
W at 3 r/ ' 5 (2n f»l)%rg ? 1 (271+1)~7r9b°
+ @ %(271 - 1)4 i i \7\’ + )( T A ) +, w a?

W2 a® 3 ( 1 1
T a %(E);?,+1)0’7T;7) sy L) ?x’—%—,u ,u,;)3
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 89

respectively. The first sum in the second of these expressions does not contain the
variables, and therefore may be supposed taken from the constant B. The other
terms, added to the first term of the last line of (67), will give for the infinite
part of 'V V=3 %‘Vg (@ — 3.

Proceeding to deal in the same way with the stresses, we find that to ensure
finiteness in the limit we must add :

W°° 3y @ ' o
(@) to the third and fourth series in P : S a (k1) in each case ;
) 2W°° 3y W23y  a
(b) to the third and fourth series in Q : 4_1)% Onpiyms and —" 203 A5 (Gt 1)
respectively ; the infinite part of P is then
Wa
P 0= 743s 73 Y,

Q and S having no infinite parts.

It we leave out.of account the parts Uy, V,, Py, which belong to a couple Wa/2 and
which can be destroyed by introducing an equal and opposite couple, we find that,
when « is made infinite, the displacements and stresses tend to the following limiting
values :

' L Wy sinh v
U= — " f ~ sin " sinh "
n 2mwh ) sinh 2u + 2 Sm b - sinb )’ du
1 WJ[ cosh u .oux uy 32\
2 (smh o0 — o S0 cosh ; 41)“2) du
ot -coshu — i 1 B < 1 >]
AR E i PR Y
21 o sinh 24 — 2u Sm b Sm b 42
[ . L sinh ¢ — 1 2 cosh
W M “o e g
2o “sinh 2w + % i Sin b cos b “u
1 Wy sinh % ‘
= 7—1 I L PR 1 cosh %‘/ d 2
M 2mh ) o sinh 2u + 2u b L (71)
1 Wy J’“’ cosh v 1/1/ By
+ m 27h {smh 2u — 2 08 Z)v Smh 462@2} du

© 1 1\ . 1
W N+ + — )sinh % + — « cosh u} 1
—_— ' Lo it = cos L ginh ” du
2 0 sinh 2u + 2u 2w

2m b
®
r N + 1—> coshw + 1 u sinh %
_w N+uo o w 1 wr Y
2mJ o sinh 21 — 24 oy COS g eoshy

’ 1 1\ 1 3 13\ 1 1 1\ 92 —a?
—s( oW s 8 ISNL 5/ 10 =
¢ <7~’+# + M) ut *0 <>»’+/»+ M> w? 8<7~’+//«+#) P }du

-+ an arbitrary constant B’
VOL. CCI.—A, N
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90 CMR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A
. W (® sinh @ — w cosh » oy 1
P = S eoy = cosh 7 d
w0 )y sinh 2u + 2w b b
Wy f ®  wsinh w wr .o ouy
—_— s e gog o sinh - d
7b? ) sinh 20 + 2u b b
W "w cosh # — w sinh u Wi .oy o U L ‘
— S e o8 - sinh = 7 L
7b o sinh 2u — 2% b b b |
Wy J‘“  cosh w4 w o 3 I
—_— s o 08 o eosh T e b i
w0? Jy | sinh 20 — 2u b b Ja?
O W * sinh # + « cosh « e | wy !
= = | = o8 - cosh S du
v b JO sinh 22 + 2u b b
Wy (7 wsinh w wr LUy
S cos o osinh =7 du
w07 1 sinh 20 + 20 b b >
) . .. (72).
W -( ? feosh 2 + w sinh « e Uy (72)
— - — ¢os ~— ginh —% — 3 7= b :
b 1o sinh 2w — 21 b b pur
+ Wy j‘” w cosh u wr o HE /
== 008 - cosh = = b
7b* )y |sinh 2u — 2u b b Ja?
W (®  wcoshu R T
S o= § e s gIn - - I "I
b Jo sinh 20 + 2u b b
Wy (® wsinhw Loae uy
o ——— sln - cosh "~ du
b Jo sinh 2w + 2u b b
w [ 2 wsinhwe . wr W g
o e gin —- cosh — du
b )y sinh 20 — 2u b b
Wy ( ? wcosh v LB Ly
—_ o ———gin - sinh " du
7ab? 1y sinh 20 — 2 iz b

§ 16. Consideration of the Stresses in the Newghbourhood of the Point where the
Concentrated Load is Applied.

The integrals in the expressions (71) and (72) ave finite, one-valued and continuous
at every point (z, y) inside the beam, such that y is numerically less than O by a
finite quantity. For in this case, for large values of u, the integrand is comparable
with ¢~ *@~1) where |y| stands for the numerical value of %. 1lf, however, Y| =0,
or the point in question lies on the edges of the beam, the integrals are no longer
necessarily convergent. In this case the expressions (71) and (72) have to e
transformed. " '

Tet us start with the stresses P, Q, S, as in their case the transformation is
somewhat simpler. Further, let us consider instead of P and Q the somewhat more
compactly expressed quantities
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TN
2W sinh 7 wr uy
P = — - J cos — cosh -7 du
+Q b 0 sinh 2w + o b b
2W j’ ” cosh wr eop M 3y dn
— —= COS , SINnn -~ === o 2
alh Yy | sinh 2 — 2u b b 40”0
N wy 3
A w cosh % cosh Y b sinh f»[- s (7 ’>'
P 0 2W 1A ) b wn 7
1 - ) = . cos - du
v b Jo sinh 24 + 2u A
b w 7
2 sinh % sinh —~ Y coshu cosh
+ 2W b b 7) cos U 9 ¥ i
! R . e s Y ,
b Jo sinh 2u — 2u I SR

-

P — Q and S give the lines of principal stress and the principal stress-difference,
P + Q gives the compression at the point considered.

If in the values (73) and in S we write y = b — i’ so that we are referring our
co-ordinates x, ¥ to the point C (fig. 1.) where the concentrated load is applied, as
origin, we find, on re-arranging the terms,

P4+Q=— QW[ e - oS 77:,.7 i
0

ah

2W { % % " osh m/ 3 /
- S e e e | COB T CO b du
mh 1o sinh 24 - 24 sinh 2 -+ 2u D b da?

L2V r L 2wt 1420 —0®) Ty,
b Jo |2 | sinh 20 — 2u sinh 22 4+ 2u ' b s /; 4 b .

2“77/ -
'zm b ooq~ (Zw

P—-Q

’VV ” w0 b wy’ 3 ;
_— ~—1¢eos , cosh 7 = —% du
sinh 224 — 2u sinh 21 4+ 2u "D b 4u® |

1420+ e 14 2u— ™ cos ™ codl wy’ 31 /
: —_ 08 —- cosh = — — 1
2 sinh 2u — 2u sinh 2u + 2u 1 21?

'7rb~

2Wy/ 2 2
— =L I [ . S 0:] cos - sinh J du.

i? sinh 21 — % sinh 2u 4+ 21 7

e
S—_“/ ( we™ iy wx

i?

W= 2 i .U . wy’
+ j !: — J sin - sinh b/ dn
0

7l ginh 24 — 2u sinh 2u + 2u b

VV?/’ wg_» 1+ Qu + o2 1 + 2u — ) L wz ay’
5 gin - sinh > da

l? sinh 2 — 20 sinh 2w 4 2u h 1A
Wy’ J’ ” 2u? u? wy'
+ wh? 0 [Sinh % — 21 sinh 2u + 27:] i 7/7 cosh - b du.

N 2
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92 MR. T. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

The leading integrals in each case can be evaluated.

If we write x =17"sin ¢’ o' =" cos ¢/, so that + 1s the distance of the point
considered from the point of application of the concentrated load and ¢’ is the angle
which #" makes with the vertical, then :

»o w b cc
J e’ cos -, “du = -33~¢
0 7
W 7 b* cos 2
j we U cos — du = — ;;~~¢—
0 b e
® L u 0? sin 2¢
( ue” " sin " dy = 28
) / 7
and we have
8W [ u? uy' 3
> A AR S SR i — 7 Ay
P+Q= os ¢' {sm]v Q01— dut? cos’ [ ; cosh b 16709}012‘
= %
WA s
SW 2 wy 3
- . cos — ginh - ey ).
+, b So sinh? 20 — 4u? b bo16uE b du (74>
2Wy/ , SW!' u? w gy’ 31
—_ — el [ 08 L e /
P-Q R 24— b sinh? 20 — du2 ° cosh b lﬁngjdu
» w? L v o, _
+8W?/:S R cos eosh Y — {
w0* Jo sinh?® 2u — 4u? b sh b 16w i
8Wy/ w? u wy'
e L sinh? 2u — 4® o8 A sinh b du oo (75)'
4W u? uw
I e T
S = 2(]5 A .(0 sinh? 21 — dy? , sin b Smh Z) d“

/7
. U1
———gin - - sinh Yo du

o I
MV?/S T T L w
0 sinh? 2¢ — 4u? b b

4Wy/' J’ u?

)

/
- csin eosh " dn L0 L L (76).
Th*

+ o sinh? Qu — dugd b b

The expressions for the stresses therefore consist of two parts, namely, the
integrated parts

w 2W oy’
P, = — - cosd s 2 = — Y
1= T o8+ ¢ ="
W Wy’ 2W 43 |
Ql = e ;77 COS (!) — "’;; COS Z ¢/ T e ‘;;'“ 7;; . . . . (77),
Wy . / oW 2y
S, = /3 Sin 2¢ = T

and the parts still in the form of integrals, which we may call P,, Q,, S,.
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 93

P, Q,, S, agree with the expressions found by Framant (¢ Comptes Rendus,
vol. 114, pp. 1465-1468) and confirmed by Boussinesq (‘ Comptes Rendus,” vol. 114,
pp. 1510-1516) for the stresses in an infinite solid due to a line of load W per unit
length, in which case the problem is reduced to two dimensions. They correspond,
therefore, to the stresses that would be induced in the beam by the concentrated
load if the height 20 were made infinite.

The stresses P, Q,, S, are regular functions of x and y throughout the beam.
They nowhere become discontinuous or infinite, and they tend to zero as b is made
large.  They represent the correction that we have to apply to Framants and
Boussinesq's result as a consequence of the finite height of the beam.

Boussiyesq, in the paper quoted above, has made an attempt to obtain such a
correction, by finding the stresses given by (77) over the lower edge of the beam,
superimposing an equal and opposite system to annul these, and calculating the
strains due to this last system as if the top boundary of the beam were removed to
infinity. This corrective system, as he calls it, will now introduce extra stresses over
the top of the beam. To get rid of these a corrective system of the second order is
superimposed, and we may go on indefinitely in this way. The complexity of the
expressions Increases enormously for each system we add, and, on finding the
approximation so slowly convergent that the terms of the second order were
practically as important as those of the first, BoussiNesqQ threw up the method in
despair, and fell back upon an empirical assumption, given by Sir GEORGE STOKES in
a supplement to a paper by Carus Wrirsox (‘ Phil. Mag.) Series V., vol. 32,
pp. 500-503), namely, that the stress system introduced by the finiteness of the
height of the beam was such as to annul the stresses due to (77) at the lower
boundary, and varied linearly along the vertical, giving zero stress over the upper
boundary. The functions Py, Q,, S, of the present article solve the problem exactly.

§ 17. Expansion in Integral Powers about the Point of Discontinuous Loading.

: ... cos)ux _ cosh)uy .
rals for P,, Q,, S, we may expand the quantities . t--X .+ 7 In
I the mtegrs v R v exp the q sin | 0 X sinh | 6

series as follows :(—

W H?/ _ ® ur ZV El‘llg,/(l)
sin ] “ sinh - o= 21< ) @y
sin - cosl m/ = § w/\@sin (20 + 1) ¢
b 0o\ 0 (2v + 1)
/ o 2 ¢/ (78)’
B ok Y s [N 008 v
cos cosh = %‘\ /;> (21/)'
u wy' _Ljur\Prcos 21/1— 1¢’
cos - sinh -+ - = 2( b) (9y+1>?

v being an integer. Now when these values are substituted in (77) and similar
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94 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

formulee, we may distribute the integral sign among the terms of the series, provided
> 8 g
that both the original and the resulting series are absolutely and uniformly
convergent. This is easily seen to hold good for the series (78), and it wil] be shown
later, in § 18, to be true of the resulting series, providing the points considered lie
3 i te) ) . L
inside a certain circle of convergence.
Assuming for the moment this result, we obtain from (77)
. GW 2 /7N cos 2vd” 4W % T\ cos v
P, = — = (v'-,_) H, ———F — —3(~1)( ) —"H,
- wh o\ b (2v)! wh b v

AWy 2 7\ cos v’
+ R =y () e

l? b v!

(79).

PR
_ AW (i 2] cos 2v+1¢"  4Wy/
b P (1) 7l

\

(= (G ) ma

" 0 D

AW 2 [ \% sin 2w’ AWy @ /7 \Y sin v¢’
—— >~ H, : v ] I
Sy ( > H,, (2v) ! h? 2,< 1) (; z;_> H,.

where

=
I

0 2
21? 3 Vg
PP au
Jo \sinh? 20 — 442 1602

”( W+ 3uP 4w — e 3 >
Jo \, sinh? 20 — 492 1602

o
I

r® ylv+2

Hr) = ~——-_>‘ CZ?,[/ — s . ‘ (8())‘

- 1o sinh? 20 — 44?

I{ _ ro(ufzn-k:% + %7(/2!""2 + %’Lég"Jr] . g;%g,,»ﬂ 0-4“)
STl B

s

Jo \ sinh? 2u — 442

(v > 0).

J
§ 18. Convergency of the Series of the last Section.

In order to justify the distribution of the integral sign over the separate terms of
the sevies (78), we have to show that the series (79) are absolutely and uniformly
convergent,

Now the series are absolutely and uniformly convergent provided that the series

o /.7 \v H .
2&—5> -—V,” is absolutely and uniformly convergent. The convergency ratio of thig
- ! . :

¢ H

. : 1
latter series = 1, — —&' -

yme D H,, v+ 1
Now, in order to find the approximate value of H, when v is large, let us consider

the integral ,,
® un )
N

o 8Sinh? 24 — 442

write ¥ = av

® 7 ® Amsit p—dav Jns
I[ —_— a”’“ j o dv J— n+1 [ Aot e dv .
7 - . : — _ ¢ N 5 A
o sinh? 2av — 4a?? o1+ 78 — (2  16a%?) e
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 95

Now let a be chosen so large that for all values of v > w, where o is numerically
less than unity, :
(2 + Uj&bvl) g~ o Sar < e,
where e is a small, finite, assigned quantity.

We then find ‘
I, = a! { j LA U,l}

o sinh?® 2av — 4a®v?

. w0 1 'w
where U, lies between [ 4yt ¢4 (fy dlld — ( 4yt e~ (Jy,

Ju T4+el,
Now
( T dv
g [ dow | (daw) (4(“0)"\
~ (day*? (1 + 1! + 21 +ooot v
| o daw (4 it 1 4 7+ 2
— n4:6 H:‘i‘ (,/4640) — { __{LS)) ' + (4ci.a.{_)_:w~i . t,() o })
(4a) (n+ 1 (n+ 2)!
nl / —dge | Qaw)rtt
='(4“)n+_i<1""“ {<L+1) +...t0co}> N 10
Next
sinh? 2av — 4a®® > LSatt,
Therefore :
5 ’ M___WZIL]ZL < ﬁwf&_ .’i‘:.j dwv < 3 o" _:__
o 8inh? 2av — 4a®? jo B ot 8 at(n — 3)

Now, w being > 1, this tends to zero when n is lzu'ge. Further, by making »
sufliciently large, the second term in (81) is negligible compared with the first.

H 1

We then find that the most important terms in I, lie between 1—_%;; Z" and Zn

Hence when n is large we may neglect 1,_,, 1,_,, &e., compared with I,

Now
qu == Izwz:

’ —_— 1 7
H'Zwl—l - 12v+3 + §12V+2 + ?13-]: 2v+1s

uw+l (1 —e 4U> J‘w lL2V+1

o sinh® 2y — 4u®

where

du < Izv+1

o sink? 2 — 4u?

I,2u+1 = j

Therefore H,,,, = 1,,,, if we neglect all but the most important terms. Therefore
m the imit H, = 1,,..

. 7N\ 1 1
Convergency ratio = L <}~_ vy T
b Iv+’ v+ 1

y=00

yv=auw

/,_.L_,.>

o (Nt be) v+3 T+

b 1 N+ 4h 1+ be
1+0’)
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96 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

where 6, ¢ are proper fractions. If we take e small enough, the convergency ratio

’

9
tends to w

The series we are dealing with are therefore absolutely and uniformly convergent
inside a circle whose centre is the point where the concentrated load is applied and
whose radius is twice the height of the beam.

The transformation used in the previous section was therefore justifiable for this
region and the expressions (79) are real arithmetical equivalents of the stresses Py, Q,, S,,
which have to be superimposed upon Framant and Boussinks’s solutions for an
infinite solid when we take into account the height of the beam. The values of the
~first few coefficients, calculated approximately by quadratures, were found to be as
follows : H, = — 2417, H, = — ‘0598, H, = 4 2271, H, = + "3370.

§ 19. Transformed Lxpressions for the Displacements.

If we take the expressions (71) for U and V, we may treat them exactly as we
treated the expressions for P, Q, 8. We then obtain, after some rather lengthy
reductions, U =U, + U,, V=V, + V,, where

1 Wy (° vl o g w 1 “ ] o
Uu — Y y e [ mn — — { - 7Y -
1= ), sin— du vl N du
1 Wy . w1
= - ?/,sm q')' —_ ¢/
n 2y 2N+ u .
1 Wy W/ 1 ok o e e )(82)
SR s )
V e ,mg,j b [N U e — - (/lu B
! w 2w Jo 008 b du 20 \\ A+ p y,) 0 % 5
1 Wy ,, W1 1 7
- A | ( IV B
2 1 ¢+2w(‘x+ﬂ+ ,u) 8 \,81),>+ !
"I 2 ,7'_4_ L 1 ,—4u b!
0oL l"/S T AT e e
T ou o owh Jol | sinh?2u — 4u? St 7, COSH T 16w |
1 2Wy/ j ? u? U . Y
w mh ) sinh? 2y — 4u? s b sinh b du .
(83),
2W 1 1 ( ® . .U 1y’ &
— e — U, R } s » S, leu/
T Wl T p).osin1122u-—4ugsm by CN Ty ”’wb]
2W 1 “Tu+ L+ duwt— et | ww L uy o &y
- [ [ ot ST s T G Y sinh Y — & gi] du
0 L=

N+ M sinh? 20 — 4u? b b
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\ 1 2Wy/ U ) \
Vo —— 07 f (— L cos - cosh —/ — o du
~ " b sinhi® 2 Z) 61//
1 2Wy/ (“[ e + du + -;— — Lot we .oy 5 Y
e e | cos , sinh 7 — 3 2 1 du
T w o wh § 0 [ sinh? 20 — 4u? b b L6 2
2W /o1 TA(e + 4+ gt — fulete a1 y' -
— + - \( LB ey cosh 8 7 (83),
s '+ " ,w/ o th~ )u = 4 b 1z
3 3 Byt e
— e N (l”’
16wt 200*  320% 07 + 4_:5]
2W 1 * 1 ey
JESEESRI P Sint mi- m—— 3 ci {
= N+ { [smlr 20— 4t °® Y ub b i b :] u B, /

where B, B, B, are arbitrary constants.

The expressions U, V; agree with those found by BoussiNgsq in the paper referred
to above (‘ Comptes Rendus,” vol. 114, pp. 1500-1516) for the displacements when b
is made infinite. We see that U is indeterminate and V infinite at the point where
the concentrated load acts.

Of course such infinite and indeterminate displacements could not occur in nature.
With any real material, if it were possible to approximate to a true knife-edge, the
infinite stress under the knife-edge would at once either cause the material to break,
or else—and this is what must almost always occur in”practice—reduce the parts in
the immediate neighbourhood of the knife-edge to a plastic condition, so that in this
region the equations of elasticity would no longer apply.

Hence for practical applications we have to exclude the actual line of application
of the load, " = 0, and a very thin cylinder surrounding it. If we do this, then all
our results will be valid for points whose distance from the knife-edge is at all large
compared with the radius of this thin cylinder. A notable point about the results
(82) is that U, is independent of »" and depends only upon the angular co-ordinate
of the point considered with regard to the knife-edge as orvigin. Hence all points
lying on a plane through this knife-edge receive the same horizontal displacement

The parts U, V,, of the displacements are finite, one-valued, and continuous
throughout the beam and over the edges. They can be, like the stresses Py, Q,, S
expanded in series of powers of +/, which are absolutely and uniformly convergent
within a circle of radius 4.

These expansions are easily seen to be the following :

AWy e P\sing  2W/ 1 M\ sin (204 1) ¢f
Uem= s $ 0BG = a3 0) T

2W % sin 2v¢p’

+ ) e,
A (2 -
T ! (84).
. 2Wy cos mj) 2w/ 1 1 "\® cos 2v¢p’

Vo= () (o ST ) ]

2W 1 o f\# T cos (Zu +1)¢"

™ N+ po <b> Qv +)! 1—12" )

VOL, CCL—A. 0
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where H_, 1s an arbitrary constant, and the other H’s have the same meaning as
before.

These equations represent the effect of the finite height of the beam upon the
displacements. If in them we put 4" = 0, ¢’ = #/2, we have the alteration in the
displacements over the upper surface due to the finite thickness. This gives us,
retaining only the leading terms,

oW [ 1 M2 AW
(Va)yoo =" <7v +M+ )9, = TR (05)8) iy
. 2W 1 1Y 1:9336 W
(Usdyo = — ™ <7»’+ P ,u,) Hy b wEb
47T8W :
giving o downward curvature at the point of discontinuous load equal to "W]‘[‘ and
1:934W .. . .
a horizontal stretch - R The effect of the finite thickness appears therefore Lo
gt

be to stiffen the beam and to decrease its curvature under the load.

§ 20. Eapansions about Other Points.  Lwpansion about the Origin.

T'he expressions (71) and (72) are capable of being expanded inmany other ways,
Considering only expansions in powers of the radius vector from a given point, we
may write in U, V, P, Q, S: =X+ p sin 0, y=Y 4 p cos 0, and we shall
obtain an expansion which is valid for all points which are contained between
y = = b, and which lie inside a circle with centre (X, Y) passing through the
point (0, 4+ b). The coeficients of p" cos nf), p"sinnf, &ec., will be integrals
containing X, Y.

The only expansions worth considering are those about the origin and those about
the point (0, — b), which is vertically below the load.

The expansions about the origin ave deduced immediately from (71) and (72).
They arve ‘

. 1 Wy o /r\sin y¢ Wz /r\¥ sin v ( 1 . T
P I R & — e -] - o P AN € 3
U 7 ')7r02< ) ! ¥, "77%(1)/ vi N 4 u 7 ! W)

T R (SO [RRS TR
P NS e - - ()
Q== NE(1) w6+ () R (s,
T
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where y = r cos ¢, & = 7 sin ¢,

P r< ‘ weoshw ,3;> du,

o \sinh 2u — 20 442

2v+1

cosh (M (v > O),

- ) %mh Qu — 2u

d Oy e
w™ sinh o —
T, =1 " du(v =0
& Jo sinh 2u + 2w ( = )’

~TD

w? 1 cosh w
I (v

=| o du(¥E0
Jo sinh 20 + 2u = )’

(® % sinh 2

G, = Jo sinh 20 — 20 du (v > 0),

G, = a constant to be adjusted from the fixing conditions. The series in (85) and
(86) are absolutely and uniformly convergent inside a circle centre the origin and
radius b.

The first few coefficients are given by

F, = -527 G, = 918
F, = 438 4 = 2818
T, = 1740 G, = 5750
F, = 7224 G, = 24'824,

where the integrals have been obtained approximately by quadratures.
Retaining in the expressions (85), (86) only the most important terms, we find

. . . Wa/l 1.
for the displacements of points on the x-axis: U, =53 < P’ 918_N+M 5Z7>,
which is positive with .

. W /144 21108
We have therefore a horizontal stretch equal to 5 < — ,_) .

E
. . W /1-503
For uni-constant isotropy i = 5u/2, and the stretch is T <~~7—r> or about one

half the stretch due to the load W acting horizontally along the length of the heam,
so as to produce a tension W /20.

s W 1T G\ .
Similarly V,_y = Gy + 57( w T /; this gives a curvature upwards
W /1753 | 2818
equal to -—; S , 1.e., to the curvature that would be produced by a pure
- 2nb* \ K m

Wb/ E .
couple oo <1'753 + . 2'818), or (putting E = 5u/2) by a couple Wb X (*5622).
The stresses at points along the x-axis are
0 2
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100 MR. L. N, G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

W a1
By ==y [ (Fy = G) = 55 5, (Fy = Gy)|
= [391 - 322-005]
71' (7Ad
W
Qo= = oy | 144 = a5 |

we have therefore at the origin a hovizontal tension and vertical pressurve. These
vanish when @ = 4 1950 and @ = 4 *386)H respectively, assuming that for these
values of @ the first two terms are a sufficient approximation, which is certainly true
for @ = 1950, but only roughly true for » = ‘3860, as it amounts to neglecting
terms of order about 4 compared with 144, Tt will, however, be sufficient for a
rough estimate.

The actual stresses at the origin are :—

- VV . . .
P= ('249), or about § of the tension due to W acting along the horizontal,

= — ( 920), or about %ths of the pressure due to W acting along the

h orizontal.

If we had used the expressions P, Q, which hold for an infinite solid, we should
. . 2
find, at the origin, P =0, Q = — ‘VZ = v (] 273).
) s
If we correct the last by SToxes’ elnpl.lﬁlcal. rule, we have to add — 1[0 <+ (stress
at bottom of beam as given by the formula for an infinite solid)].
W

This will give Q = =5 = 5 (1955).  The error in the vertical stress,

calculated from this amended formula, is therefore only (‘035) W/2b, or only about
3L per cent.

With regard to the correction for the horizontal tension, BoussiNesq finds, for a
span 2/ and depth 20, '

P““WI:4

Sy, 3 =)
AL T ar

7l

where %" is measured from the point (0, b) as before.
o

SW . .
The terms “—- (¢ — 0) { correspond to the bending moment which we have

407

removed.

w 3y C ey .
We have left therefore P = - _ , so that, at the origin, when ¢ =0,

20 7h o ‘

) \V V\ . . . . .

P=g =5 (:318), and this gives a tension which is greater than the actual onc

)T .

by only (-069) W/20,
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD, 101

§ 21. Expansions about the Point (0, — D).

It appears of some interest to give the values of the displacements and stresses
about the point (0, — b), that is, the point of the lower houndary of the heam which
18 vertically under the load.

The integral expressions (71), (72), (73) transform as follows, if we write
y=y" =0

1 \V//” " [ 20 cosh 20+ sinh 20, e ! w
J = - osin o cosh == — 3 L
U 2mh ,[0{ sinh?® 21 — 4 Moy cosh Ty g } e
1 Wz/” E 2usinh 2 . wy”
+ - — sin = ginh Y- du
w 2mh )y sinh? 20 — 4° b b
1

W 15 (" 2 sinh 2w W wy! @
el B — | ~eosh 77— 3
+ <7L' + @ + ) ’ [: dar QIH b ! b e o

2 p/Jo |sinh? 20 —

w1 2 cosh 2w + w7 sinh 200 . o ny' ay’!
O AT

o

gin - sinh ~—

T 9N + p sinh? 2u — 4ar2 b b A7,
L Wy” (®(  2usinh 2w uw wy” 3
V=—-—+¢ [ cos - cosh — b du
w 2mh sinh?® 2u — 42 b h 4u®
1 Wy [* [ 2u cosh 2¢ + sinh 2 ur wy” !
+ - ‘/—j o —-——cos ~sinh -7 -— % Py
w 2h sinh? 2w — 4u? I 1 b
w 1 1N\ [® [2cosh 20 + »~ ' sinh 20wz wy
Y
— 5\ PN Yy -cos - cosh -7~
2 \N + p w/lto sinh?® 20 — 4u? b b
3 3 3y —a?
—_— e T e ’Z,_.v, , (]“
ot Hu? Su* ?

W/ o1 * sinh 2 we . owy” 3y
— (7, os --sinh " — ——% 1 du
+ 2 <)»’ + ,u>J {smh 2u — 42 9% b 4 b ’

2W 2 h 2u UL ) :
P+Q=" J { wsinh 2 0% osh 2 — *-L} du

7TZ) sinh? 2 — 4u? O b 402

cos - ginh 7 - — s

Z\V [ 2ut cosh 2u + sinh 2w we L ooy A
sinh? 2u — 4 b b 40 1

7rb J

. 2W 2u sinh 2u "% wy” 3
P— Q= o og - cosh -7 — b du
I R/ j {smh Q0 — 4ai? b b 4u?

2wy ’,j 2u? cosh 2w + u sinh 2u cos " cosh wy” 3 I
7h? ), sinh? 2u — 4a? Ty T 42|

2Wy” (®  2u? sinh 20 uw 7/’

+ 0 T P 08 =~ th - du,

70? J o sinh? 2u — 4u
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102 MR, I, N. G, FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

W (® 2usinh2v . wux W/
S = [ _IIEY in 2 ginh - du
7h } 5 sinh? 2u — 4a? b
+ Wy J’ ? 2u?sinh 20 . wx cosh (7%
e - T 5 ST - i~ - AU
70* ] sinh? 20 — 44? b b
W?/” 2u cosh 20 + sinh 2 . w2 /
-------- sin —sinh - du,
alh® ), sinh? 2. — 4u? h
These m‘reo"l als remain convergent when we put 7/ = 0, but they are not convergent

in their present form for 7/” = 20.
If we expand now in powers of 77, where @ = " sin ¢", v/ = " cos ¢, we obtain
1 I > > e s
the following series, which can easily be shown to be uniformly and absolutely
convergent inside a circle of radius 20 :

o 1 2Wy" 2 ”)’ sin v¢ /
U—“Iu, 'n'/)—z( )<b/ o
‘)\V/ 1 >°° "\’ sin v¢> ;o 2ZW 12 P\ gin ggjlt{)_ ,
T \7\/—)—/& ?( )<7)> o+ L y%<7) (‘)V{T)' oy
- (87),
. 1 2Wy" 2 [7""\" cos vep”
Ve = () T
c),r © RN c)‘ ] ® [\ 2 9
_ oW 1 (=1 ( _____ \ cos qu I, — w1 ) < w cos 2 vd') T,
™ N p wmopoa \h/ (2p)!
4W 7 cos mj) , 4W 5 ( "\ eos 2ug” Lo A
D J —_ v
P= arlh %( 1) <7)> H'“ + h ,, /)) ()v) H
4-\'\7'1/1/ e /7,’/\ v CQS,I]¢“V -
e (1) \7;) LT
4 (88):
A (I S
Q_—'zﬂz(?)) () v+ 1)! Hopo 2( by ) LE
AW 2 /77\» sin 2v” 4Wy/" 2 <7”' v sin v’ Lo,
= — /. RN I =
S = h 1 </;> “(2v)! HO' + al? 2( b v! H vz
where

H’, = an arbitrary constant depending upon the fixing conditions,

JI % sinh 24 3
- [du

T, = ,
0 Lsinh® 20 — 42 1607
IR r $u* cosh 2u + 1w sinh 20 3 T
R sinh® 2u — 4a® 1602 [
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 103

AR

Hy = J

L0 ¥ ginh 20 di (v > 0

o sinh? 20 — 4n?
» .2 ¢ 2v—1

. — j L™ cosh 2u + Fu®
2p f P
0 sinh? 2u — 4u?

sinh 2w

du (v > 1).

The values of the first few odd H’s are all we shall require. They are
W, = — 049, H’, = + 537, H’, = + 1'95L.
We then find, for points along the bottom edge, ¥’ = 0, ¢ = =/2,

QR=0,8=0
L 8W 21, AL
P = s <-— 049 — 7?9 ( 537) -+ W4 (l 951) 4 .. >
TR . . . : ; W
his gives thevefore a horizontal pressure at the point (0, — ) equal to 5 (1250),

and this pressure increases at a fairly rapid rate as we move away from the axis of y.
The stress P, obtained from BoussiNesQ's caleulation on Sroxes hypothesis,
. . W /4 6 W . .

gives for the same point P = 5 <7r — ;7;) = -5 ("657).  This value is con-

siderably too high. We gather that Sroxkus’ hypothesis ceases to give valid results

for the points in the lower half of the beam.

§ 22, Bffect of Distributing the Concentrated Load over a small dreq instead
of a Line.

In all the above work we have. supposed the load W concentrated upon a line
perpendicular to the plane of the strain. This has led us to expressions which make
the stresses, and one displacement, infinite at the line where the load is applied,
and the other displacement indeterminate. In practice, however, owing to the
elasticity and plasticity of the materials both of the beam and of the knife-edge,
contact along a geometrical line is impossible, and the load always distributes itself
over an area, small but finite. '

In the present section we shall therefore consider the eftect of a uniform distribu-
tion of load W per unit area (W was formerly load per unit length), extending on
either side of & = 0, ¥ = 0 for a distance «'.

Every line element Wd¢ of this load at distance € trom the middle will produce
a system of stresses and displacements Pdé, Qdé€, Sd€, UdE, VdE, such as; we have
Jjust been investigating, except that for « we must write (z — £).

The stresses and displacements due to the total load are therefore J4 GP (x — €) d¢,

s
-

["Qe—9de ["s@-0dg [U@—8ag | V=g ds P -

—a' a
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104 MR. 1. N. G. FILCN CN AN APPROXIMATIE SOLUTION TF'OR BENDING A

denoting that « — & is substituted for @ i P. Similarly for Q, &ec.; or writing
x —E=u', we have

V=P W) de U= | U @) o
R . ARG , ]
Q) = ‘ Q () da’ V= \ V () i

8= [ 8 (@)
e
P, N, U, V) oreferring to the stresses and displacements due to the uniform
layer.

We can obtain in this way, at once, as many different forms for P/, Q', &, U’, V/
as we had for P, Q, S, U, V. The series for the latter integrate at once, for they
are composed of terms of the form const. X 7 cos n or 7 sin np, or ¥ cos nd or
yrt sin ng, wherve » = /2% + 4%, tan ¢ = x/y. We have then

. 1 AT
[ 7 sin ngp de = — i rthcos n41¢

. il . lop =— - J‘- w1l g ,/f\l
7" cos ne da = TR TS o .
" T L

he only case where this fails 1s when 7 = — 1, and in this case it 18 casy to show
1 ¥ ; ¥

that j w: ¢ de = ¢, m}ld’ de = log 7.

o

Terms of the form ¢ and log » also ocecur.  They can be integrated as follows :—

J’d) de = axd — y log r,

[log rde = log r — a4 yd.

Lt we apply these formule, and if we call D, and D, (fig. ii.) the points (— &, 4 b)
and (4 ¢/, + 0), i.c., the extremities of the layer of stress, and if », », denote the

<~———q—3—,————>

Fig. ii.

distances of any point from D,, D, respectively, and if ¢, ¢, be the angles which
7, 7, make wich the vertical, we find, if we start with the expressions for U, V, R, Q, S
in the form, (77), (79), (82), (84), '


http://rsta.royalsocietypublishing.org/

VA\
/s
. 0

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1\

3

\

N

y i
///

A

a

5

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 105

. 1 W 7 w S
U'= W o y log 7‘ Yo N :A- (¢ + ) py — (x — &) b, — o log (/1) }
2Wy' 2, W cos v + 1 ¢ — 757! cos v/-|—-\1 oS
o (2 H," P+ 1)
aWh /1 > 772 cos 2w + v+ 2 ¢ — 75" cos 2/1;:2 o
+ a (\X’ + /1 + “w 2 sz b2v+l (‘)V + Z)Y
Y
W 1 gy riTcos o+ Lpy — 12 cos v + 1
Ny e (21/ + 1)v
1 \V 1Y s ey
V= " (¢ — $.) + <7:f;'# + - . ) {(a, + x) 1ng8 (89).

—(w-—a'nog(;;;)ﬂ(qbl 8}

: 2Wy = 1 T ]
+ 2B — #g/ smv+ by — 7 5111v+ ¢

YRy, T L s

TN

2W 1 #3+gin 2 + 1y — 3" sin2v + 1 ¢

S e A T
TN

2Wp 1 2 73"” sin 2v + 2 ¢, — 73 sin 21/ + ? b2 H,

+ ;r_._ 7\‘/ ;{_ w % T Z)2V+2 (21} + 9)!

P =— - (¢1 ¢.) + (sm 2¢p, — sin 2¢h,)

4}7_\[ § H2 7 72 gin 2v +1dé — *gin 2 +\1 b
bZV+l (2 + 1)’

m

f}y_V §( Wy H e si.n}/ +1 ¢y — 75 sin ﬁ-\i o
P v+ 1!

T TN
n 4W7/ 2( Y H 7(7,,,1,“ siny + 1Ly — 5+ siny + 1 ¢z)
v+1 bv-bl (1/ + 1)1

Q= ((ﬁl ¢,) — (5111 2¢, — sin 2¢,)

™

+2

+ in Iy +
A sin Zv +2 4,1 — " sin 20 + 2 ¢y
7-u+1(:) + ‘))Y

M8

HZV+1

T
AWy 2 5111y+1¢——/)+ smv+]q§
— sy,
b f( ) b”“( v+ 1)!

, w
y = — o (cos 2¢, — cos 2¢,)

© ..V+1 ST uv+l
_fJ:_Y\_’EH cos 2v + 1 ¢y — cos2y+]¢>
2v b-v+l (:) + 1)!

ELTEN (— 1y A cosy + Ly — 15 cosy + 1y
7TZ) v+1 bv+l (V + 1)' J
VOL. CCL.—A, r
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106 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

The expressions (89) and (90) show us that in this case the stresses and the
displacements are obtained as the difference of two functions taken with the
extremities of the layer as origins. The series are everywhere uniformly and
absolutely convergent inside the common part of two circles of radius 40 described
about each of these extremities as centre. It follows that if these series are to be
valid anywhere, the length of the layer must not exceed 80. And if they are to be
valid round each extremity the length of the layer must be less than 4b. If these
conditions be not fulfilled, then we have to fall back on the results (74), (75), (76),
and (83) for P, Q, S, U, V. Integrating these we obtain formulse valid over the
whole beam, and these again may be expanded in powers about any point we please,
as has been previously shown. The results are rather long and do not seem to
present sufficient interest to justify the writing out of them at length.

Assuming 2a’ < 4b, so that the expressions (89) and (90) are valid over a region
enclosing the layer of application of the load, we see that here no displacement is
either infinite or discontinuous. For in the limit, both (¢’ + «) log », and ¥ log
are zero when @ = — o/, 4 = 0; and in like manner (z — a') log , and ¥ log », are
zero when & = + o/, v/ = 0.

} w
A
1
Plane of | symmelry y=o.
°
B

AW

Vg, iii.
The shear 8 1s continuous. '
The stresses P/, Q' however are discontinuous at the extremities of the layer, This

indeed is obvious in the case of @', since it is one of the data of the problem. But it

is curious to note that P’ is discontinuous at those points by precisely the same

amount as Q'

§ 2. Case of a Beam under Two Equal and Opposite Loads, or Resting upon o Rigid
v Smooth Plane.

If we take the solution we have obtained, turn it upside down, as it were, and

superpose it to itself, we obtain the solution of the problem of an infinitely long beam
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD., 107

gripped between two knife-edges exactly opposite each other (fig. iii.). The solution
is obtained from the previous one by changing the &gns of y, Vand S, and then
adding the new U, V, P, Q, S to the old.

I do not propose to write down fully the solution ; it is easily obtained in various
forms by using the several expansions which have already been given for the beam
under a single concentrated load only. The parts of the stresses and displacements
which become infinite at the points of loading are of exactly the same form as in the
previous case. _

Let us, however, consider the stresses. We easily find the following expressions:

; 2W (* sinh 2 — w cosh v 76/!/ % /
== T — cosl du
P ‘ard jo sinh 2u + 2 co l ~cosh
2W [ uy sinh Wy Ly
~ S “Y du.
b jo b sinh 2u + 2u cos - b ~sinh b au
2W (* sinh w + w cosh % Uz wy
Q= — 2 | SLULELCORD o s "
v b sinh 20 + 2u eo8 5, cosh b dr

(91).

”/
sinh 2u + 2u cos b sinh " du.

2Wy (®  wsinhw w
=

wh?

ll

Uz

PAYY 2 cosh . ux
j g g, ST smh du

) 0 sinh 2u + 2u

Wy [ ®  wsinhw
Jo sinh 2% + 2u

i sin l;j’ cosh %Z/ .
The last written equation shows that S = 0 over the plane y = 0. Further, from
considerations of symmetry V = 0 over this plane. Hence we may, if we choose,
leave the lower part of the beam out of account altogether, and consider it as
replaced by an infinite smooth rigid plane, against which the beam is pressed by a
single weight, W. It then becomes of considerable interest to find out how this
weight W distributes itself, after transmission through the beam, over this rigid
plane.
The pressure — Q on the plane corresponding to y = 0 is given by

—Q=+ %W j‘o sinh u + w cosh U u du (92).

sinh P + ou oS N

It is easy to show that this pressure tends to zero when x is large.
Integrating by parts with regard to u, we have

Q j d [sinhw +wcoshw, . wuz J
= ; s - du.
du\ sinh 20 + 2u ) b

The integral on the right-hand side is obviously not infinite, however large = may
be. Hence () tends to zero as x tends to infinity.
P2
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108 MR, L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

We might repeat this process any finite number of times. It will be found that
sinh % + w» cosh u

being an even function of u, the integrated terms will in all cases
sinh 2u + 2u

it

_ : 2W
vanish at both limits, and we obtain Q = - nil

X an integral which is not infinite when
« is large. Therefore we see that () diminishes faster than any finite inverse power

of @, however high. This seems to suggest an exponential law.

§ 24. New Form of Expansion for the Pressure on the Rigid Plane.

Consider the integral

I j sinh % + u cosh 7
' Q

cos 1z dar.
sinh 2u 4+ 2u '

‘We have
1 1 2u . (Quy
sinh 2 4+ 20— sinh 2w sih® 2w T " + (— 1) sinhr ! 2u + -
(-t (Zuy! 1w (2u)y
(=1 sinh 20 +(=1) sinh? 2 (sinh 20 + 2u) "

Substitute in I, we find
I=J0+J1+ e +J/+ e +J7z—1+]}wa

where
J. = (— 1Y) __<A2ﬁ2,,_‘ h h 2
= (=1) St 20 (sinh % 4 u cosh u) cos uz du,
? (2u)*  (sinh % + w cosh 7/)
2= (— 1) ( uz d
Ry=(=-1) jo sinh” 2 sinh 20 + 2u 008 uz d.
Now

‘ " (sinh w + « cosh )
— r 021 I L -
J” - ( ‘!‘)7 2 jO A0r+1)u (] -4u) 1 cos /M/ (ZN

Let us assume that in this we may expand (1 — ¢*)*! in ascending powers of
e, This will be justified later.

1 =R s+ 1) oo (ST g
TN S ,

(1 —_— 6-*41;)1 +1 T a0 7 !
whence

J = (___ 1),- 221{ g"w (5' +1).. - s+ 1) {e—(4s+21'+1)24 — 2 90 008 uz du
0 = !

s=0 7

+ (_ 1)1‘ oo Jﬂwzf‘“g:w G+D...6+7) {e etieree 0—(4s+2r+5)7l} cos uz du.
0

The cases » even and » odd have to be treated separately. Consider first » even
and == 2¢, and let K, and L, denote the first and second integrals in the last written
expression for J,. Then owing to the vanishing factor we may take the = in K, as
going back to s = — ¢, or, putting §' = s 4 ¢,
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD.

an
K, = 2% [ u?

But

<0

and similarly

Now let ay, iy, .

§'=

¢

Ew (5, - t + 1) (g - 1) S . (sl + t) ;(%—(43’4—1)1/, . a——(-’is’
o (20) ‘

48 — 4t + 4 = (45 4+ 1) — (4t — 3)
45 — 4 =45 +1)—5

45 = (45 + 1) —

48 4+ 4 = (45 + 1) + 3
49 + 4t = (48 + 1) + (4 — 1),
45 — At + 4 = (45 4+ 3) — (4t — 1)
49 —4 . = (4 +3) —

48 = (45’ + 3) — 38

45 + 4 —(4s+3)+1

45" 4+ 4t (48 + ‘3) + (4t —_ 3)

. 0y, be the coefficients in the product of degree 2¢

o+ (4 = D} o+ (=)} o= (1= 9)),

when it is expanded out, so that this product is

Then

a4+ @ L
fx — (4t — 1)} fx — (4t — 5)} . . {z 4 (4t — 3)}

= qg® — a2 4 ..+ Q.

K, may then be written

o

(2¢)

.{*

8‘—‘30

~
_l Uy {(48 _|__ 1)2t '—‘4q’+]1l (48‘, + 3)‘2t e_4sr+3u}
§'=0
+ 2 o, {(48 + 1)‘2!— _4s+1n+ (4S + 3) _481_,_31‘}
+ i ((2 {(48’ + 1)2t..—2 ({—-@‘d — (45. + ‘3) 9 v__m‘}
§=0

+ .
s'=» /I\ -
+ s’§0 Aoy _y {(43, + l) 8—“ e + (4‘, + ‘3) —42’(31&}

=0

—4’+1 —4¢'+3
s 4 s+ 3u
+ 2 C(g, N 1}'

=0

cos uz du.

109

2 cos uz du.
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110 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

Now if, as we have assumed, our expansion of (1 — ¢ *)™""! was justifiable, we may
stop at the v term, leaving a remainder less than an assigned quantity, provided »
be taken large enough. 1t will be shown in the next article that this is the case.

We may then, in the above, write for the upper limit of &' a number », large but
finite. The series now consisting of a finite number of terms, we may distribute the

24
integral sign, and further, we can replace «* by (—1)° ;2} , since obviously each of the

integrals of the typej e~ cos uz du when k > 0 allows of being differentiated under
o ;

the integral sign. This gives us, when the several integrals are evaluated,

K (—1)t dz i ('0 2 { (45 + 1)6{4—1 _ (4q + 9)"t+1 }

(2! & s + 12 + 28 (45 + 3 4 22

=y (4{1'_},22“ (45" + 37
Tl {(49 SR 42 T (4 43 4+ }
S [ (48 4 1) (45 + 3)?
+ e E {(4:8 + 1P+ (4s+ 3P + 22}

E S IS (45 + 3) }
N (AT ) il VI e

Now writing in the above
(48" + 1) = {(45' + 12 422} — 22, (45 4 3)* = {(48' 4 8)* 2%} — 2%,
and remembering that d*/dz¥ destroys any power of z < 2¢, we find

K ( 1y & - (Clzo(— 1)tz2t+062(__ 1)z-1,2t-2+ o
2t (ﬂ)t){ d72t . 4 1 4
+ ) 3 { s S }
i (49 +1) + 22 (4s +o) + 2

=0

+ (a, (— ‘1)“2‘ + a, (— 1 e

1 1
wm_lz) 2 {(43 + 1)% 422 + (45" + 3 + 'ﬂ}_

But, from CHRYSTAL'S ¢ Algebra,” vol. 2, p. 338,

T Tz Y= 1 1 1
4o tamb 5= % {(4.5-' IS} R RO jL

T och ™ =§ 45 4+ 1 45 + 3
4 2 oL@ + 12+ 22T (48 + 3R 4+ 22

If, therefore, in our expression for K, we now allow » to increase indefinitely, we
obtain

) [ g
K, = % 22_0)] { a2t [‘I’zt (z) SGCh + Xat 7) tanh - J}


http://rsta.royalsocietypublishing.org/

/—%

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD,

where

l112’:(://)_____._'ao(__ 1)&224_[_ az(_ 1)t—lz‘.’t—-2 + .
(V= 1z4+ 4t — 1) (V= 12+ 4t —5) ... (y

— 1
- 2

-+ oay

| +(— /= Let4t—1)(—/=Teddt—5). .. (-

TN

/T — 4t —3)

Xoe(2) = o (= 1) 2% 4 Lo — a2
Tl dt— 1) (V= Dzt 4t —5) ... (/= 1z — dt—3)

| (== 14+4t—1)(—-

—-1z+4t—-5)

A=y —12—4

If we treat in a premsely similar way the second in’oegml L,, we find

L, =

Coming now to the case where »» = odd = 2t 4+ 1, we work out Ky, and Ly, by a

7I' ( )t d1t+1

4 (Zt)' d,,“t-H

<‘p2t (2) tanh 7;5 — X (2) sech 7;) .

similar method. 'We consider in this case the product of degree 2t + 1,

(x4 4t — 1) (x+ 4t —5) ..

which we denote by

bt 4 bt 4 bt L L.

+ b2t+ 0

(@ — dt—=3) (x — 41+ 1),

= Tz—dt—3) |

+3) ]

After reductions of the same type as those used for K,, we find

(=1)y

2+1 —

d"t +1

(2 + 1)1 de?t

(bo(-" 1)6Z2t+1 +bz("'* l)t—l P B

4s+1

+628Z)2 {(4_ +1>2+4~

§'=0

49 +3
(49 + 3)2 + 22

+ (b (= 1) 2 by (— 1) 4 L

+bo112) 3

1

8’=v{ 1 +
1P+ 2 T (A 43 + 2

}
P

Lo = (=D @ (b (= 1)
2t+1 — (9t + 1)| dz2t+2 i
— b)) 3 { - s -
2t §=0 (43 + 1)2 + z,., (48’ + 3)2 + 2

whence writing

+ (b (= 1) 2 + . ..

=y

+ bun) %

A

4 + 1

4s + 3

(48" + 1y + 22

T 48+ 3P+ 2

P
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112 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION I'OR BENDING A
by (— 1) 2% by (— 1) 25 4 L.+ 2by |
(V=Tlz44t—1) (v/ = 12+ 4t — 5) . .. )
) (V= e — i—3)(V/ =1z — 4i41)
S VA M vy ) Yy PR S i—‘/ ¥
B (V =12+ dt—3)(v/ — Iz + dt+1)
by (= 1) 2% 4 by (— 1) 2 b L A by,
(W —lz+4t—1)(V —lz+ 46—5) . .. |
(V — 1o — &—3) (v — 1z — dt+1)
¢ = Xz (2),

R — TN S TN
= (V =1z = dt=1) (/) — 1z — 4t—5) . ..
I

(V — 1z 4+ 4—3) (v/ — 12 4 4t + 1)

we obtain
-Z'ZIH-I

(— 1Y 7 « T U
Ko = Gr 1)1 4 de P (2) sech "+ oy (2) tanh 5

(__ 1)6 T dl’.l'{‘ﬂ . TR i ] T
L2L+1 = (2{—}--]:)" ‘4 dzﬂ_‘_g’ -_— 1//2¢+1 (Z) tanh “é“ + Xzi+1 (Z) sech ’2‘ )

and since J, = K, + L,, we find that the required integral

{ T T
i (1) g | P, (2) sech o 4+ xz (2) tanh )

= Ty e
I=- Eo (20)! dz )

e

! T% L
L ()t = () s

T T |
pim (= 1y @ Yo (2) sech 3 4+ Xu41 (2) tanh e I

+ - o AT T
4 o (28 + 1)! dertt d e LT
- <‘ch+1 () tanh 5 T Xeewn () sech ~2—>J]

F Bovse « o e e (93,

I "——'—/\’_“'“\

§ 25, Justification of the Procedure employed in the lust Section.

We have to show that, in the case of the integral

— |7 @
Ju = jo sinh#+! 2,
. \r"‘(élu)n (5—2/7::2”

(L gyt (sinh u + » cosh ) cos uz du
0 _—

) (sinh w 4+ u cosh u) cos uz du

we were justified in expanding (I — ¢7*)™" in ascending powers of ¢,
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 113

Now
1 Tn+r

e S A S Pl

Differentiate n times with regard to «,

1 rr+ ). (rtn—=1) 1odr [ artr
(1 — oyt =14+ et 7! 90 n -

The remainder is therefore

-1— dr antr patr
ntdar (1 —2) ~ (1 — a)y+l
v+ )4+ r—=1)...(n+r—s+1 ks (n+r)...(r+1) o
+ 22X ). DTy )
§! (1—=z) ! 1—2z

This holds for all values of @ however near to 1. Putting # = ¢™* and substi-
tuting in J,, we find J, = Ist » terms of the series 4 a remainder term consisting
of the sum of (n 4 1) integrals of the form

“(n+7r —1 —8-t1 dar)* (sind cosh
2'[0( + )(n+r Z' (77/+7 + ) —(Gﬂ+1r 15+°u< 2()(5-81111.6_61;;:’/_1—:1 uuuuuu ) COS Uz du,

) ( r—=1...(n+7r— 1 .
(n+7r)(n+ 7 )8Y n+r—s+1) being

s ranging from 0 to %, and the product
replaced by unity for s = 0.

Now sinh % is always < w cosh u: hence the general integral in the remainder
(the factor multiplying cos uz in the integrand being positive throughout) is less
than

(0 4 1) (o r—1). _ 1 4qy  \n+l=s
Jo ( Y(n + 4 Yoo+ —s+ >(4u) o= On+dr =15+ Du o0l u< ! du,

sl 1 — g~ 4u
t.ce,, than
*(n 47 r—1).. .0 P ! 2u \ntl-s
j (+nmtr—1)...(n+r—s5+1) ¢t =200 (4} cosh 1 (,AﬂM du.
0 8! sinh 2/
2 . :
Now sii:h_ém < 1 always, and cosh < ¢, The general remainder term is therefore
less than
T+ ry(n+r—1)... s
jo ( + ’)(77 + 7 ?91 (n + 7 s + 1) (4:%)8 e~ Untdr=2s—1Du ]y,
n+r)y(n+r—1)... \’—t 1 .
<3 ( ) ) . ( ii i )for s ranging from 1 to n.
<n + 7 — 2 - %)
For s = 0 the remainder term < 1 ——. Thus for every value of s the

(n-lw—l—-}f)

VOL. CCL— A, Q
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114 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

value of the corresponding term in the remainder is seen to become very small of the
order 1/r when » is made very large, n remaining finite. The value of the whole
remainder is therefore also small of the order 1/r. Consequently this remainder
tends to zero as we make » large, and the series is therefore a true arithmetical
equivalent of J,.

We have still to show that a similar result holds for the expansion found for I,
namely, that the integral we have called R, tends to the limit zero when » is
indefinitely increased. This we can do as follows :—

" .
(2u)* sinh w + v cosh w
R, = -—1”{ . : cos uz du
= ) Jo sinh® 2¢  sinh 2u 4+ 2w
is numerically less than
J‘ ® (2u)* sinh w -+ w cosh % /
; - ; du
o sinh” 2u  sinh 2u + 2u ’

and it is easy to show that both (2w)/sinh* 2u and (sinh % -+ w cosh u)/(sinh 2u + 2u)
continually decrease as u increases.

Hence, if we split up J into r +[ , the first part is less than {w X value of the
0

0

Yo

integrand when u = 0}, v.c., < /2. The second part is also less than

Goy j Psiubv 4 weoshw o
(sinh® 2w) J,,  sinh 2u + 2u ’
. . Sy e _ : ® (o)
Denoting the last integral, which is finite, by M, we have R, < §»+ (sinh %)
numerically.
But
(20) (2e) < 1 - 1
sinh* 2w 8w\ 20\ 2nw?
2o + - T = T4 =5
0 3 3
. M
Therefore R, < £ -+ o h
20 L 2’

. ) . 1 M
Now if w be chosen equal to n™7, I}, < 5o - T
9 L2

zero when % tends to infinity. R, itself therefore tends to zero for all values of z, so
that the series (93) may be extended to infinity.

, & quantity which tends to

§ 26. Deductions as to the Rapidity with which the Local Disturbances die out as we
leave the nexghbourhood of the Load.

If we look at (93) and perform the differentiations, then, remembering that x. (z)
is of degree (2¢ — 1) in 2, xu 41 (2) and Y (2) are of degree 2¢ in z, and iy, (2) is of
degree (2t 4 1) in z, the only terms occurring in I will be of the form (algebraic

. . mE e . s . v .
polynomial in z) X <seeh o oor sech? 7, ov their differential coeﬂ101ents>. Now
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 115

sech 7;3 and all its differential coefficients will be of order e~% when z is large.

4

Similarly sech?® —7;—7 and its differential coeflicients will be of order e ™ when ¢z is large.
We see, therefore, that the first n terms of the series for I will be of the form

(algebraic polynomial of degree n in z) ¢~ % to the first approximation when z is large.

Further we have obtained an expression for the remainder R,, which is small
independently of z, for any given large value of n. We see therefore that, n being
assigned, we may make z as large as we please and I will eventually tend to zero,
™2 becoming large more rapidly than any polynomial of finite degree, if z be large
enough.

Now z = w/b. We see therefore that, if b be small, the pressure, after a certain
value of x, decreases with extreme rapidity as we get away from the neighbourhood

N
/ |\
[t
NG
[
&
kS
/ al |\
IWE
/ NEA
\
/ \
-3 -2 //- ‘\ 5 ]
T Values | of a/b. e~
Fig. iv.

of the concentrated load, because, z being then large, even for moderate values of «
the influence of the exponential term will be predominant. On the other hand, if b
becomes finite, or even large, the algebraic polynomial factor will become predominant,
and the decrease as we go away from the point of loading will become much less
rapid. The expansion (93) gives us a link, as it were, between the case of a very
thin beam, where the local effects die out according to a negative exponential of the
distance along the axis, and that of an infinite solid, where they decrease as an
inverse power of the distance from the point of loading.

A diagram is given in fig. iv. showing the variation of the pressure Q along the

Q 2
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116 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

base of the elastic block where it rests on the rigid plane. The ordinates represent
the ratio of Q to 2W /mb—that is, the integral which has been called I. The abscissae
represent the quantities 2/b. The diagram has been plotted from the following values
of I, which have been calculated :—

/0. L

0 o 1-4444

/6 7412

e 7 ‘1125

)2 I ~ 0300
N
N e

For a value of 2/b equal to 135 about the pressure vanishes, and is replaced by a
tension. This is a very remarkable result, as it shows that an elastic block, acted
upon by a concentrated load along a line of its upper surface transverse to its length,
cannot have its whole base in contact with a smooth rigid plane on which it rests: at
a certain distance from the load the body of the beam is lifted oftf the plane.

It would therefore appear as though the problem treated of above were impossible
to realise in practice. But obviously we may superimpose any uniform pressure on
the top of the beam, sufficient to make the total pressure at every point below
positive. This may be done, in some cases, by the weight of the beam itself,
if the weight W be not too large.

Further, the tensions required to keep the lower surface of the block horizontal
are, as we may see from fig. iv., very small. If we leave them out of account,
we do not sensibly disturb the distribution of the large pressure under the load, so
that fig. iv. still gives us an approximation if we omit the negative part of the curve
altogether. '

This gives a maximum pressure just below the load equal to (W/b) X 920,
or rather less than the pressure due to the load W distributed uniformly over the
vertical cross-section of the block. This pressure diminishes rapidly as we go away
from this point, being very small at a distance from it equal to about 1'85 of the
height of the block.

We cannot tell exactly, in the actual case, where the pressure will be first
absolutely nil. 'We can form a rough estimate, however, of the dimensions of the
area in contact by taking the area over which, in the solution obtained, the stress is
always a pressure. This area extends to a distance of 135 X height of block, on
either side of the vertical through the load.
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 117

Some rough experiments on a block of india-rubber lying on a wooden table have
confirmed the result that the block is lifted out of contact with the table away from
the load, and that the area of contact is of the above order.

PART 1II.

Sorurion ¥OorR A BeAM UNDER ASYMMETRICAL NORMAL FORCES: SPECIAL CASE
of Two OrrositE CONCENTRATED LOADS NOT IN THE SAME VERTICAL
STRAIGHT LINE,

§ 27. Fapressions for the Displacemenis and Stresses in Series.

Let us now proceed to consider what the general solution becomes in the case of a
beam subject to normal forces which are now no longer restricted to be symmetrical.
In this case coefficients y and & come in, as well as a, B8; «, », {, 0 being all zero.

Consider particularly a beam (fig. v.) subject to a downwards concentrated

W we
LG
4 2|l
1
I 2a
b mm e ‘;'6: —————————————————————— >
v
W_l‘ \
a w
Fig. v.

load W, acting upon its upper surface at « =/, and an upwards concentrated
load W, acting upon its lower surface at # = — 1.

Such a system by itself is not in equilibrium. But the solution will introduce
cos

- by equation (50).

two shears over the ends, equal to s (y» — 3.) "
1

",
In the case taken above «, = B,= — W/2a, o, =B, = — %cos ml, y,=—3,

W . o s
= — ——sinml, where m = nn/a, n being an integer. - Hence the shears over the

% oW . aml Wi b e .
ends are 3 (— 1)’”“;;; sin ?% =, and these will satisfy the conditions of rigid
1 .
equilibrium.

We then find the following expressions for the stresses and displacements in series :
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118 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A
» ——lr sinh mb — L mb cosh mbl

s 1 W W+ » ! cosh my s
: == e— — my 111 M
U ? n o cos ml sinh 2mb + 2mb cos Y5

o
§ 1 W cos ml sinh mb
1 4« sinh 2mb + 2mb

y sinh my sin ma

{ »/]— cosh mb — 1 - b sinh mb}

@ . .
+ 3= Wogin g Mt . o ) sinh my cos ma
Tmoa- sinh 2mb — 2mb

© 1 W sin ml cosh mb

+ % MA ‘({ SIlﬁl—mv;l b __ 27”{1)* Y COSh my cos mx

sinh 2mb — 2mb

Wz
20K
) (94).
, LW { <N l + }—) sinh md + S mb cosh mb}
—_—_ s W 9 1% 2 M :
V= ? m @ o ml sinh 2mb + 2mb sinh my cos mw
2 1 W cos ml sinh mb )
w1 Co8 mt simh o <h S M
+ % # « sinh 2mb + 2mb Y COSh My cos mi
\
5 1 W {<)~'i + i) cosh mb + L mb sinh mb}
% -~ 8in ml b 20T St cosh my sin max
© 1 W sin ml cosh md . .
+ ?7 ; m‘:b]‘;{é Y sinh my sm mx
Wy
o9k 4 Az
P — 2W 2 o sinh mb — md cosh mb i h
- a 7 sinh 2mb + 2mb COS mx cosh my
2W % cos ml "y sinh md inh
a ¢ sinh 2mb + 2mb COS M sIh my
2W § sin ml cosh mb — mb sinh mb . inh
1 sinh 2mb — 2mb SIL e sih my
2W o my cosh mb .
T ? sin mi sinh 2mb — 2mb sin m cosh mny. : ,
(95).
Q= W .‘%W § cos ml sinh mbd 4 mb cosh mz) . -
- 2u 1 sinh 2mbd + 2mb CoS ML cosh -my
2W =z my sinh mb .
-+ " ? cos ml Sinh 2mb 4 2gp COS T sinh my
2W § ‘0 ml cosh mb + mb sinh mb . h
a S ' sinh 2mb — 2mb ST G Sk vy
2W o |
+ = % gin il ,,.,?n?/,COSh mb
1

~ sin ma cosh my. , )
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 119

W = mb cosh mb h
S=— % cos ml Snh 2mb & 2mid sin ma sinh my

my sinh mb

S S & 2, S M cosh my

:_JW ®
— S cos ml
1

S L. (96),

mb sinh mb
sinh 2mb — 2mb

ol cosh mb
sinh 2mb — 2mb

cos ma cosh my

cos mx sinh my

where A in the above is an arbitrary constant representing a rigid body rotation. If
the conditions of fixing are that the two extremities of the horizontal axis are to
remain at the same vertical height after strain, A is zero.

If, on the other hand, we fix the beam in such a way that the shears Wi/a over
the ends are each allowed to produce, at the extremities of the axis, the deflection
which they would produce if the bar were clamped at its middle and the deflection

Wia? .
YR This

appears to be the more natural method of fixing. We shall, therefore, in what
follows, suppose A to have this value.

were calculated on the Euler-Bernoulli theory, then we find Aa =

§ 28. Integral Expressions when a is made Infinite.

When we increase the length of the bar indefinitely, it is easy to show that, if we
take the last given value of A, the displacements remain finite at a finite distance
and the stresses remain finite throughout—excepting, of course, at the points where
the concentrated loads act.

We then obtain, as in § 15,

R sinh 2 — Lu cosh %
U W S LN F T ’ ul WY g "7
= -\ - : cos —- cosh =~ sin - du
o U sinh 2w + 2u b p SO

Wy sinh wl . wy . wE
27 j - cos — ginh 22 sin -b—du

T parb Jo sinh 2w + 2u b b
(97)
: * < 1 b b, >
—— coshwu — =~ sinhw J 1 3
+ = S N1 L sin = sinh -2 cos— — i du

T Lw smh 2u — 21, b b b N p ) 4uPb?

Wy cosh ul wr

wb;bj <smh 20 — 2u sin b cosh 5 b ! cos b 4 402 b> du
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120 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

* ( ( 1 + 1\ | Wt a | 3
W 1 , —>> sinh & 4 — cosh » i (
V:-——S LWy L J cos  sinh - co ?ﬁdu
mJou L sinh 2u 4 2u b b
Wy j sinh ul Lu/ uw
SR Y w h “wor
4 — et sinh 20 1 90 cos - COS cos & du
1 1 1 WL
W 1 (i;:—— + —> coshu + — sinhw ol w rL (97)_
—— -7 2 K__H# B [ sin" cosh 2 gin = '
T Jol_ sinh 2¢ — 2u b b )
/1 1\ 3 =
M(\x’+u+ >4Zo |
WJJ ~ coshu .ol wy .U T
pd Jo sinh 2w — 20 "™ smh Sttt (]u
— 2w j “sinhu — o 09,8216 cos ! cos ™ cosh Y a
- 7wh Jo sinh 2u + 2u b cos h cosh b i
2VV i J i smh % ul
w0 Jo sinh o + Zu 08 COS b Smh du
2W j‘ cosh # - — sl sinh in Z‘{ 2w h /
I sinh 2w — 2u St b sin b sin Cu
2Wy j a cosh v .ol 75
R o sinh 2u — 2u s b i b COSh b Clll
Q=W j sinhw + weoshw ol e,
- 7 Jo  sinh 2u 4+ 2u CO8 % cos Z cosh © b e
2Wy J * wsinh w 2l
w0* Jo sinh 2u + 20 83 cos Z Smh du
QVJ coshw + wsinhw . uvl uz h'zcy/d SR (98)'
b sinh 2u — 2u st b sin b sin t
gﬂg j ~weoshw . wul w 1 l
gl B 90— o, s 5 sin ) COSl d,
()VV 2% cosh i wul
S = — j b 9w + 20 ©%5 sin 7 smh du
2}’\77/ J o smkhﬂ wl " } ]
7b* Jo sinh 2u 4+ 2u b sin - p o8t b S
2VV j wsinhw .l b / d
7 o sinh 2u — 2 S - b COS b COS] t
2Wy J‘ w cosh % .ol uw /
+ 7 Jy sinh 2u — 2u S, 008, sinh 5" du J

Now, as before, these expressions may be expanded in powers of » about the

origin. In this case they will be found to have a radius of convergence /{*- b2
Or they may be expanded about either point of concentrated loading, when they

will have a radius of convergence 2,/I? 4 0%, or they may be split up as follows :—
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 121

Write
coshw = ¢ 4 oo (A =du+e™)
sinh 2 + Zn D) (smh 2u + ‘)w)
cosh = o 4 g (L+du+ e 2«)
sinh 2 — 2u, 2 (‘%mh 2 — )%)
__ sinhw = o o (— 1.-— 4, 4 ¢~
sinh 20 + 2u ' 2 (sinh 21 4 2u)
sinh # — ek (=1 + 4w + e

sinh 20 — 20— 2 (sinh 2u — 2%)

and consider separately the parts of the integrals due to the first and second terms
of the right-hand sides of the above equations.

We find, after some reductions, on writing b —y = v/, y* + (x —1)* =77,
y—b=9y", y? + (x4 1=} (x + Z)/y” = tan ¢,, (¢ — I)/y = tan ¢,
W_pos N _ W cos ¢, u’

Wz/’ )
P = — “-- cos 2 P
mr Ty + e OO 526, + ry? cos 2y + by
W cos W cos ¢, 1y’ W
Q= — Vesd  Weosd, !ng cos 2, — - cos 2y + Qu b . (99),
T T T Ty
Wy Wy
S = 7”:/9 sin 2¢, — —?— sin 2¢, + S,
L S
where
r® — 9 —_— —2u\ p—u
P, = ‘ 1+ Su—4v® — (1 —u) e ¢ 008 1_6_2 COS wx 0 oh / (lu
” wh J sinh 2u 4+ 2u b

o wy 7
; : sin — sin — sinh -7 d
wh Jy sinh 2u — 2u b b 1

_ W \‘“’ 1+ 57:// — 4w + (L —w)e)e™ . ul uz

0s " cos = ginh "V du
Lt COS — sinh -~
sinh 2u + 2u b b b

Wy * J w (1 4 du — 7)o ul
0

wh?

VV?/ w(l 4 dw 4 ey e L owl L oun uy
0 sinh 21 — 2u S, s cosh 3 du,

(100),

Q=

VV 1+ Bu+ 4t = (1 —2u) g~ ul
j (” . F A ( + U) o )6 - COS 'I/ CcoSs ’Q COSh b C]U
o sinh 2% + 2u b b

,Y A%

‘ (L + 30+ 4 + (L +w) e™) e .l U

Csin © gin ““ ginh —' /]u
sinh 21 — 2u I b

Jo

Wy "“’ w (14 4w — g72) on ul ur . W d
_ N P COS —° COS -~ SInh == ¢
sinh 2u + 2u b b S b u

Wy ™ (1 A+ du o) e wl . owx w
+ [ e e sin " sin " cosh “ du,
g 0

2 sinh 21 — 2 b b b J
VOL. COL—A, R
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122 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

W[ w1l —du + )¢ wl .o wy )
S, = b J sinh 2u + 2u €08y S sinh - b dn
W P u (=1 4+ du+ ey o ul
— ‘ i + wt o) sin = cos — cosh * / du
b Jo ginh 24 — 2u b h
. (100).
W?/ i‘ w (1 4 4w — ™) g™ wl u 7(/
) Jvr b 0w p oGO8 sin 7) cosh - du
> <@
Q\Lﬂ’] Wy jw o (14 4w+ ™) e o ul w et ™
:é + b, sinh 20 — 2u Ty 008 smh g au J
> P
= . . W
2 (25 P,, Q,, S, are finite and continuous all over the beam. They may be expanded in
25 5 powers of 7 about the origin, the series being convergent inside a circle of radius
EO V17 4= (3b)%, so that the points of concentrated loading are included. The parts of
w

P, Q, S which become infinite at the points where the load acts are of the same
form as if the beam were an infinite plate.

§ 29. Series in Powers of .

PHILOSOPHICAL
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We may here quote the expressions for P,, Q,, S, in powers of #.  They are :

W cos 2vgp [ u (1 + bu — 4o — (1 —w)e)e™ ol I
P, = 7;1)% <b> (2v) ! J' sinh 2u + 2u 08 5 au
W= e\ sin 2 (* w? (1 + bu — 4?4+ (L — ) ™)™ . Z
- wl}z (b) (2v)! § sinh 20 — 2u sin Z: au
TN
Wy s r\vreos2v+14 r w2 (1 + du — o) e cos " du
+ o2 ) Cv+1)t Jo sinh 2u -+ 2u b
A .
\\Q\q Wy /7 \+sin 20416 [ w2 (1 + 4u + )™ . -l
- —_—2 T - sin -— du,
< 7l* g\ D @Qr+1)! sinh 20 — 2u b
—
2 : Q, = W2 3 7 >9" cos 2v¢J‘ 2w (1 + 3u + dup — (1 + wye™®) g cos ul du
- 5 © wby b (2v)! sinh 2w + 2u b
= O W /e \¥sin 20¢ (P w? (L4 Bu 4 4w + (14 w)e ™) e L oul
= — =327 ; j . sin — du
o b1 \ b (2v)! sinh 2w ~ 2u b
SZ Py
%O VVz/ 2 7 2+l cos Qu41 gbj u’”"([ 44w —e ~“)c “ OS ul du
85 - b b Qv+ 1)1 sinh 21 + 2u
0
8§ Wy /7 \B sin 5‘—1—\1 N e G S T ) LA
='§ 4+ =23 (- ) j —gin du
El— b 3 \ D (2v + 1)! sinh 21 — 2u
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Sg _ X ;l: </ ~,) >.‘3V si(l; 5)1/;# ( ijfl ((:Hl_]; 4:{41 ;:)u) e  eos /‘7_ du
I il B v v L
R e
WG (s L [ b g,

where r* = a® 4 4, © = y tan ¢.
U, V may be broken up in like manner and the parts U,, V, which remain finite
and continuous everywhere can be expanded in the same way.
We shall require also the series for U, V, P, Q, S in powers of r, deduced directly
from the expressions (98). They are

T VV”;( 1 1 3”“511121/4—1(1)
U= W%W CQV—I_M(M)@/)

\

+ ” (2v + 1)1
_.Y‘r_//:a r v Slll 21/([) + Wl/ r >2V CO»b ZV(b
whp T T b) @t Ty B (z) (20)!
\/\f 0 1 < 1 < ( \v+1 C()E_ZV _I,_ 1 (l)
+ W%<A’/+#b2v_v[-ﬂbg,v> Z)) (91/-*-1)' 5
, w2 1 13 2+ cos 2u+1 é
V=__«{_v,v ! }(
71.20" i )\',+,U/ /) ’V—1+ CQV (ZV'—I—l)‘

+
}V// Z 7\ eos 2vd “A,,f/_ T v sm v
+ WbMZO‘(JQV—]<Z)) (Zl/)! + 2V-1<b) (Zl/)
+

Wz 1 1\ o\ sin 2o 1
B T e
T o \N -+ /4, M, b (2v 4+ 1)1
101)
2W = w 2 . w1 ( )
P=—=""12(C,., — () 7~> ot - W:/ 3 Cy, 4y e Zv+1 ¢
wh g b (21/) ! w0y C b (2 + 1!
2W 2o 7\¥sin 2o 2Wy % /1 Y"“ sin- Zv+] ¢
,n.z)zl‘(bQWl 2v)<b> (2){ b szleb ‘31;]— 1)! s
2W eos up | W 2+l cos 2y +1 ¢
____m_'ﬂ”’ q | 7 \* CoS 2v 2Wy 2 P\ cos‘u+
A== 3t 2”)<b> @yt T 2(“2”1&5) (20 + 1)!
2W 2 r\¥sin2vp | 2Wy rlsin (2o +1)¢
— - S, S) () S T S /
bz( ZV—-l+b2v)<b> (c)) + 0P Sﬁzu-{-](b) (21/—}—1)' 5
2W 2, sin 2vp  2Wy 2 \¥+1gin Zv+ ¢
§ =" O Dt AN A L
b %02”<b> (2v)! h? %szﬂ <b> (2 + 1)!
Wy [ \Peos2vp  2Wy iz [ \¥FLcos ZV—} 1 ¢
B wb§52”<b> (20)! 252”“& ) (v 4 1) )

R 2
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where (7 w2+ cosh w wl , \
C,, :"'-‘ s -du v= 0, 1,2, ...
Jo sinh 20 + 22, b
FO 942 it
2 sinh 1 wl
C =j e @ s~vdu p=— 1.0 1.2 ...
t o sinh 2% + 2u y T T
- (® w?+lginh o ul
{ &
T m - ¢ e 0.1.2 ...\ 9
Be, Jo sinh 2u — 2u 1 du v 1,2, / S (10 )
\ (” 212"“ co::h v ! .
. = sin -~ du v = 0,1, 2,.
il jo sinh 20 — 2 b v e 4
and q J cosh w sin /b 5 g
= T — U,
1 o | sinh 20 — 2 420 b )

§ 80. Dustortion of the Awxis of the Beam.

1" in the expression for V we write ¥ = 0 we obtain the equation of the distorted
form of the axis

Wa /1 1 1 L e A e
V= VFZ(JM +#+#}b”'l+/&b2’)< b <b> (v + 1

To the first approximation it is a semi-cubical parabola

V== \Z{( -t b) <b+ >6Z)°}

This holds if  be small compared with 0. 1f further we have 7 small compared with

b, so that the two concentrated loads are applied in near parallel lines (e.g., as in the
case of material pressed between the edges of a pair of scissors), then we have, to the
first approximation,

. L(*f wcoshu ‘ B cosh o du
S = b, \ (511111 Qu — 2u 41'/;) du — 60 ‘0 sinh 2u — 20
= [i F, - %%Fg (see p. 99),
Sp= 1Oy —} G,
Sl = ‘Zl;Fg - % 2'; Fs»
Sa =’é F— %ZGO

The terms of order */6® may be dropped in the coellicient of a%/b% the latter
quantity being already small, and we have finally

Wi 1D oy BN B
v 2l o)~ 2]
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or putting If = 5u/2 to simplify the arithmetic

W.r[ * [l b
Ve = [z-so — 496" T ]
K2 H?

The slope of the strained form of the axis at the origin is therefore a maximum
30

when 2:80 — 4'96 X Zq =0, or I/b = "434.

For such a value of /b the approximation will not be quite valid.  Still, it will be
sufficient, even then, to give a rough idea of the values of the coeflicients.

Assuming the formula given for. V to hold for this value of I/b, we see that this

. W

greatest slope is — ("810).

Now if the part of the beam between x = 4 { were subjected to a uniform shear
W/20 giving the same total shear across the section, then, if the sections @ = -/
. W : - S

were kept vertical, we should have V = g‘; Y= - 1, © X 1°25, if E = 5u/2. This

gives a slope nearly 3/2 of the preceding one.

§ 81. Distortion of the Cross-section x = 0, and Shear in that Cross-section.

It we work out in the same way the value of U for x = 0 we find

7 AN A T 1. 1
U= 3 <b> i(N P e bzy> (“2~I¢1) + Szy 1(2‘;)'1}'

1f 7 be very small and 7/0 sufficiently small for 5th and higher powers to be
neglected, this gives, assuming I = 5u/2 to simplify the arithmetic,

Wl/é {! DR f/l 30 5
= 2R [(4 By —25G) + 2 G ¥ —+% sz‘)},
. \ ,
%.C., U = V‘;’ég‘:__ 52992 + (49))]

We see, therefore, that the 2° term is practically negligible, or, for a very large
range of y, the mid-section remains sensibly plane.
For the shear in this cross-section, we have

. é}ﬂfoo Zﬂw N /‘ 22 ] N
5= Wﬁ&( >(2>'+ 3 ““(b) (20 + 1)

or

g

2wV W <<52

2z _ _\‘\_ "18"")."‘
e T ) bl) higher terms.

S is therefore a numerical minimum at the centre if »;)c”’ — 53, > 0.
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126 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A
Now for the small values of 7/b
Sy = (U/b) Gy — & ({/0) G,
S, = (/b)F, — & (/b F..

But since G, = 24'824, F, = 7224, when //b is small S, > 2S,, and the shear
increases from the centre outwards. This is shown by the full curve (@) in fig. vi.

\

A
|
A

h éj\\ d
|
:é A&
18 .
> 23
o5 85
33} 4

[~ R ]
= O s L9

e BN
TO RS
=uw <\
- () D Q
5z § O
=9 283
=|: . oS
BOwu “1T g
Q<o « >
oz @)
—< -1 .\“\.
T A S Colaii B —my TS N
== \/ R f \

A bk X1 I SRR (YT etel \
/TX 5 Sk
'l / \\ I‘\
If: /,')" \\ // \\‘~§ ‘\‘1\
:l;."/ (a) .\:‘:

-0 -8 -6 -4 -2 0 _ - 4 6 8 [0

2
Values of y/b

(@)-—— curve showing variation of the shear when b= 1b .
( b) —————— “ " 7 " " Con “ L =345 b,
{(Q)~—-——r— * " " o " " é = -‘52‘6'
W (A)rimmsi— n " " a w n " l=oc0.
_ g N 3
<, Fig. vi.
|
=
. Wy . Wy . .
S E Near the edges y = + 0, if [ be small, the terms ;;;’/;; sin 2¢, — m/ sin 2¢, will be
2 2
e ﬁ the most important. Hence the shear is a minimum at the centre, increases to a
=0 high maximum corresponding to a distance from the edge equal to [ approximately,
E 8 and decreases down again to zero. The full curve i fig. vi. has been drawn

for { = b/10.

As we increase /, these maxima at the sides become smaller and smaller and move
towards the centre. At the same time the shear at the centre increases.

When /b is made indefinitely large it is easily seen that S)and S, tend to the
finite limit 37/8 whereas S, and all the others tend to zero.

Hence, for some value of I/b we must have S, = 28,.
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It we calculate the values of S, and 8, for I/b = /6, #/3, /2, we find

b S1. S5,

/6 1-9862 3-9475
/3 1-2585 +3235
/2 — ~ 0591

From these values and from the known behaviour of these functions near [/b = 0
and /b = o we can draw a rough diagram illustrating their variations. Fig. vii

S
curve of S,
————————————— " 1" 28,
————————— " ” 80
/\ —————— — Asymptotes to
' curves of 25andS,
C,S:‘ 4 / '/ d \\\
(0\ ¥ ‘\\ )
\\"] /
6 I/ \
) / \
3 / N
Q \
1/
Q / A
QO { N
N |} Lo\l NR |-
e o e e SR e
i
3§ 2 }
S !
O /
] J \
3 / \,
~N 1 [ R N | \.. — ——
3 L ol \
1 P2
! e
| e
/|
7
/ \
/ Y
o
& ro T T 2.0
Values of /b
Fig. vii.

gives the curves of S, 28, and S, as we increase . It will be seen from the figure
that S, and 28, intersect when [/b = *52 nearly.

Hence, when the arm of the couple is about half the height of the beam the shear
is stationary at the centre, a horizontal straight line having contact of the third
order with the curve. Curve (c), fig. vi.,, shows the distribution of shear, roughly
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128 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

sketched, for this case. It is easy to see that the centre corresponds to a maximum

. . . X 2W S, S,
for the shear, for the next higher terms in the expansion of S are — = 7b/‘ < R *1>

We have therefore a numerical maximum if 8, < 4S;, and a rough numerical
calculation enables us to verify that this is the case.

The shear is therefore greatest at the centre, hut decreases extremely slowly and
remains constant over nearly half the section.

Another case of interest presents itself when the shear at the centre is exactly
equal to its mean value over the section.

This occurs when S; = '7854 = /4.

If we write S, = (l/b)G — s (I/bY G, = 2818 /b — 4°138 I¥/b%, we find that this
roughly corresponds to //b = 32.

Measured on the diagram for S, on fig. vii. the value of I/b corresponding to
Sy = m/4 would be about -35. This latter value is probably the more correct, as for
values of {/b > 3 the above approximation for S; is hardly sufficient.

In this case it is found that S,/2 — S, = *4 roughly. The shear is therefore
a minimum at the centre. It increases as we proceed outwards, but not very rapidly,
and decreases down to zero at the edges. The curve is shown as (b) on fig. vi. The
total area of the curve reckoned from a horizontal tangent at the middle point as
base is zero, #e., there is as much above as below.

Finally, curve (d) on fig. vi. shows the distribution of shear when the arm of the
couple is indefinitely increased. This is the parabola

) N

S:——% Kb ——?/)

It is striking how very early this limiting distribution is reached. Fig. vii. already
shows that the coefficients of the series reach their limiting values with great
rapidity. For an arm of the couple equal to twice the height of the beam, the
parabolic distribution of shear, corresponding to a long cantilever, will, at the mid-
section, be practically undisturbed.

§ 32. Practical Importance. of this Problem.

The problem which has been investigated in this part of the paper is one of
considerable importance in practice. The only way in which we can apply a shearing
force to materials is by means of two opposite asymmetrically situated pressures,
such as we have dealt with in this case. The case of material cut through by
scissors, which is frequently quoted as an example of the application of shearing
stress, really corvesponds to a stress-distribution of this kind. Similarly, a rivet
which fastens together two plates is subjected to stress-systems of this type
whenever the compound plate undergoes strain in its own plane, In nearly every
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modern engineering structure, such as railway bridges, &c., cases of this kind are of
constant occurrence, and the strength of the structure depends, to a very great
exfent, upon the strength of the individual rivets. It becomes therefore a problem
of the very greatest practical importance to know how the distribution of shear
inside such a rivet varies with the dimensions of the rivet and with the thickness of
the plates. At present our knowledge of the subject is purely empirical; and
although the results of the present paper apply only to a rivet of rectangular
section, and even then are only an approximation, yet they should furnish some
indications which may be of value in other cases.

Another point which is illustrated by these results is the manner in which
DE SAINT-VENANTS solutions are modified, when we gradually bring the terminal
systems of load closer together. We see that the modifications introduced are
practically insensible at distances from the section where the load is applied which
are greater than the height of the beam. This is of importance, as it tells us within
which limits, in any experiment, we may assume the state of a beam to he given by
one of the ““uniform” solutions which only depend upon the total terminal conditions
and which are transmitted without change of type.

PART T1V.

SOLUTION FOR A BEAM WHOSE UPPER AND LOWER BOUNDARIES ARE ACTED UPON
BY SHEARING STRESS ONLY.

§ 33, Hupressions for the Displacements and Stresses in Series and Integrals.

Let us now consider a beam acted upon by shearing stress alone, over the
boundaries ¥ = 4 0. Then, in the general solution of § 7, a, = B8, = v, = 6, = 0.
If further we suppose the shear to reduce to a single concentrated force I. at one
L L
point (0, b) we have {, = o (L= S k,=0=0,=v,
a

Putting in these values into (44), (45), (46), (47), (48), (54), and (55) we obtain

N+ 2u La? SN+ 2u Ly 1 Ty 3
U= AL S Nl s A I e A B
),u.(h’+ ,u) ab +3 20N + w) ab + u 8a Ay +

$ A Ko cosh my cos ma
21 2am sinh 2mb + 2mb 80 7ig/ COS M

) < 1~ -+ 1> cosh inb — L mb sinh mb
14 14

1 1\ . 1 - (103)
P ( N + — 4+ > sinh mb — — mb cosh mbd
+ 951 2am sinh 2mb — 2mb sinh my cos mx

Z L 1 ycoshmbsinh m7/ L 1 y sinh mb cosh my

an
T max 2« T T T T COS mx
n=t 20 g sinh 2mb + ‘)mb + a=120 p sinh 2mb — 2md ’

VOL. (CT,—A, s
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1 h b L b sinh m/ )
————— cosh m — mb sinh mb
A Lay o L N+4p + M . .
T L — S sinh my sin max
16;L N+ p) ab 1 2010 sinh 2mb + 2mb
. 1
] - sinh md + = md cosh mnb
§ LMt £ cosh my sin ma
_ / . : - eosh my sin ma
ot 2am sinh 2mb — 2mb Y
2 L 1y cosh md cosh my
+ = 4 LY sin ma
et 2 % /.e sinh 2mb + 2mb
2 Ly sinh b sinh mg
4 3 0 PRI G ma 4+ Aw + C
et 200 ;L sinh 2mb — 2mb
P Lz g L 4 cosh b — 2mb sinh mb cosh 7 .
T T sh my s ma
4ab a1 % sinh 2mb 4+ 2mb Y
2 L 4 sinh mbd — 2mb cosh mb . 1 .
— ' : sinh my sin ma
2% sinh 2mb — 2mb Y
§ 1. 2my cosh mb sinh my in m § L 2my sinh mb cosh gy |> (103)>
-3 ML = 3 S g m,
22120 sinh 2mb + 2mb woh 20 sinh 2mb — 2mb
0 g Li 2mb sinh mb cosh 9717/ N % L 2mb cosh mb sinh my
— — —_— sin ma
A el 90 sinh 2mb + 2mb =1 %0 sinh 2mb — oamb
3 I 2my cosh mb sinh m7/ e + 2 L 2my sinhand) cosh my
— ; ———" §n ma
=1 9a  sinh 2mb + 2mb ‘)a sinh 2mb — 2mb ’
Ly °° L. 2my cosh mb cosh my
§ =Y + + ‘ J Y cos ma
Aah 4({ PR 90 sinh 2mb + 2ml
# L 2my sinh md sinh my
""" . COS mx
et 20 sinh 2mb — 2mb
+ :”1 L cosh mb — mbd sinh mb sinh m cos ma:
' - —— sih my cos ma
sy sinh 2mb + 2mb Y
L sinh b — mb cosh mb
s 8 —— cosh my cos ma
ot (b ‘sinh 2mb — b : )

where m = nw/a, and A, B, C are arbitrary constants to be determined from the
fixing conditions.

Now if the fixing conditions are

(i.) That the displacement of the origin is to be zero ;

(ii.) That the extremities of the axis are to remain on the same horizontal line, then

C=0,

<v~-1- + 1> cosh mb — L mb sinh mb
Be — % L WHp 4 H o,
T D 2am sinh 2md + 2mb
A=0;
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but if we put in these values and then proceed to make « infinite, certain parts of
the expressions for U and V do not give finite integrals in the limit.

This is due to the fact that the conditions of rigid equilibrium require shears
Lb/2a at the two ends (fig. viil.).

Lb
AzZa
b
C" I
"\ T L
A e i e L L S E——
L i L
& Y - B
Lb
2a

Fig. viii.
These shears Lb/2e will produce a deflection due to Dbending along, which,
caleulated from the Euler-Bernoulli formula, comes to

\

g SL [ e P ( LN e
V= oY <cm 3> ¥ + v T #) (for & > 0),

and when a 1s made very large, this gives

3Lt /1 1
Vzazﬁz}ﬂ‘(;“’xq;). Coe o (104)

for the bending deflection produced by the end shears at large distances x, which,
however, are still finite compared with a. If, therefore, we allow the beam to bend
freely under these end loads, in such a way that each of these produces its proper
bending deflection and no more, the constant A must be adjusted so that, for large
values of , V tends to the value (104).

This implies that A must have an infinite part, which will exactly cancel the
infinite paat of V. It is easily found that the value

;o 1y, Lg 1
A\ — [~ Bt I R 4
A (7\' + p + }L) 8q .,il A + A

where A’ is finite, will introduce terms in both U and V which will make these
quantities remain finite in the limit when « is infinite.
We then find, putting in for B the value found and proceeding to the limit,
s 2
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\

o0 |7/ ‘
. S 1 5 Kk' L + '»)(_,osh’u — ~sinhow ) e A
V= "\ WH+wu p/  p < sh % cos T — 1 ”
U= 2r Jo v sinh 2u + 2u \COS[ b oS b v ot
o I - P ) -
I S 1 | (7\7'4!%'7 + - ! >%inh =" coshu "y p Loy
+ 29 Jo ‘; ginh 2 — 2ue stk 1A cos A N p dub du
Ly . coshu T, v
- e ginh 7 cos - du
+ Zwb{ i sinh 2 —l— 21 Sk b cos b d
Ly L sinh o uiy i 5 ,
+ brbj Lmh 2 — 2u cosh G 41(9} i — Ay,
(105).
1 I
l U Vo cosh & + = wsinh « | w
V=~ - B L Y A SN 4 sl 1 d/{,
27 Jo 2" B sinh 20 + 20 ] sinh h si [
= 1 . 1 '
1, S 1 7\"1"‘/;« sinh 2 + ;u cosh u> ne - 0o
— ) e - sh'/ gin"” A
2ar o sinh 2u — 2 cosh” Z) sin' b\ 4 + M/ —J:uqb ] w
Ly ( 1 cosh u 5 w g
S n
Qard 0 M 51nh2n + 2u cost b bl ! I ar
Ly (1 sinh o
v ( R smh Y sin du + Az
27 Jo i3 sinh 20 — 2 )
Now, when in V we put 4 = 0, we have left
e -1 . 1 \ i
1, S 1 <m5111h t + /; u cosh ) o (/ 1 L"> 0 o A
— e - 1 1 .
2mdo L sinh 21 — 20 0 R N R A A
I'his integral may be written as the sum of two others,
” N 1 A
'LS g St ety s 1 O i
-_— e oy e e e e s - du
2w L sinh 20 — 20 (\X’ e TR T LV VA D N T Sy,

1, {"’ A I\ we/b — sin e L/ 1 Z
=3 S - ; {
+ 27y {[)(7\/4" P + /v°> 4 Y :l 40 (\ N+ ,u> s 1 f .

Consider the first of these integrals, and let

_ ._],,, sinh 2 -|- =t cosh w> 1 1

SN 1<S+N p 1 IR 1/ v .
SO=1," ama s <>C’“+M )i~ a0l v )

Then f'(u) and its differential coefficients are finite and continuous for all values
of u, and vanish for w = . f (u) itselt = 0, when 2 = 0 and the integral
3 ’

.\U |17 (w)| du is finite, | f7 (u)] denoti.ng the absolute value of /" (w). 1t is then
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0
easy to see that I = J S (v) sin ué du tends to zero as ¢ tends to infinity. For,
0
integrating by parts
L

1= [— %cos uff(u):]:—l- ;J | cos ué f (u) du

D

= ;JO cos ué [ (u) du.

AW

But <J | /7 (v)| do < afinite quantity M; hence 1 <
0

mw;

"y’c()s ué " (u) du
0

.

and therefore tends to zero as € tends to infinity.
Hence, when « is large, V reduces to the second integral. The latter can be
evaluated, and 1t comes to

: 1 1\ a2 L /9 1
3 SN (2 -
”L<7\ +/»+/J)b‘“’ 160<M 7\/+F'>

for x > 0 and

3L/ 1 1\ L (9 Lo
P (x + u + ,u>b2 + 160 w N+ ,w) for e < 0.

The first terms correspond to the bending due to the shears at the ends.

: . L ( 9 1 . ‘
hould therefore trv to m: ty — )= or all Taroe values
We should therefore try to make A’w 166 an M> = 0 for all large values
of w.
This is obviously impossible. But A’z being eventually the most important term,
the condition is approximately fulfilled by taking A’ = 0. This determines U and

V. We see that the effect of the isolated shear L is to deflect the central line of the

. L /9 1
beam through the distance 2 X 150 <~. N > away from its line of action.

Putting A’ = 0 in equations (105) they give us U and V. Integral expressions
for the stresses are obtained in like manner. They are

P L j“’ 2 cosh » — w sinh » L wy .U / h
= — - osh -~ sin »VHI
7hJo sinh 20 + 2u ¢ ] b
L[® 2 sinh w0 — " C()bll woL
— —~j ~ ginh " gin " d 1
whJo sinh 24 — 2u b 10
.o 6
L r uy  coshu L ) g (106)
_— ———ginh - sm AT
whlJe D sinh 20 + u, b l
L r’ wy sinh 1 “Y ™
— = e cosh - blll —
'n'[) D smh 2t — 1 I J
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134 MR. L. N. G, FILON ON AN APPROXIMATE SOLUTION FOR

: L v sinh . wy .o
) = — [ sh —Z gin —

v b ) 0 sinh 20 + 2 cosh b s b du

L i’” w cosh l vy L T

wh g sinh 20 — 20 sindy - s - b @

Ly " U)b]l (Z . oLt

+ 7rZ)~J0 sinl 20 + 20 sinh p P du

4 sinh v

147/ j ' o
+ w* ), sinh 20 — 2u cosh 77 ) L i B du,

1y 2 cosh u 2y
N = ‘/2 e osh ' cos “F du
- smh 2u + 2 1A
Ly [ ? wsinhw Loy i
— sinh -~ cos - du
+ 0" ), sinh 2 — 2 b h
L [*coshw — wsinhw .\ wy 101
+ - P sinh -~ cos - du
b sinh 20 + P b 1A
+ L J blllh W — wbh iz L "y WL I
- COSh COS — du
b sinh 20 — 2u b I

BENDING A

s . . (100).

§ 84, Buwpessions for the Displacements and Stresses i Sevies of Powers of the

Ladius Vector from « Point.

The expressions given above for U, V, P, Q, S

may be transformed exactly as in

§§ 16, 17, and we obtain expansions about the point (0, 0) where the shear is applied.

Eventually, 2/, ¢’ having the same meaning as on p. 92, we find:

7= 1( Lot Ny / )
U= 20\ N + + /.L>10g <7)) - 2 2’ cos ¢
b 11 [\ s (2 o+ 2) ¢ NETRY
P 2 )
2L a T eos (20 + 1)
B B R ACL .
m <\>\.’ + M/> v <\Z; ) (20 + 1)1 H..
2Ly 1z [1"\* cos 2v¢’ 2Ly" Loz [\ eos (Zv + 1) ¢
- TS (TNT S 2 (0 )P (HL H.
b ,u% b> (2v) ! H,, 7l ‘J <\b> (2v + 1)! (H'“ "’>’ i
(10,
Ly Loy ., |
V=~ Z7r(7&+ /J,j - '2-71_#175111 (l)
2L/ 1 2 [\ sin (v 1)
— Lt >2<> vt D1 e
2L Loz 27\ sin 2
Sy e e — 1
2 ) 3G T e = 1t
2Ly =, (7">2"“ sin (2v + 1) ¢’ Lz/ ( A\ sin ‘)u¢
— T NI T Y (H
w3\ 7 o r iy Han = Ha) o3 () ) @yy: Do
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9 ' R
P=-— 2L Sm,¢ + 5 Sin 2¢/

O
8L 2 /7 >2V+1 §1n_(2y + 1) ¢’

(21/ + 1) ' ( +2p+1
4l » <[ >~' sin 2vg’ H 4Ly’ 2 < >2' Hsin(2e + 1) ¢ .
) )

— H,)

’ﬂ']) 0 b

7r/11 (2)' ot )i% (9Il+1) e
_Aly ( M\ sin 2v¢p’
7T]i 2 \7) > (2 ) (H‘_’V'H H?V)

L(107),

H

_ Ly , %Lf (ﬁ ' sin 2vd’
Q  ssin 2 + Z)) @y e

wh
% U e B (Y
S yo 2y 4L & <Z> GOS(;@:];), ¢ (Hapy — H)
S (R O R

-/

where the H’s are given by equations (80) and are the same as before ; and

D = r <n — 3+ dut — Ll + e 3 1 coshu ) Tu
: 0

sinh? 2 — 4u? 4 1642~ 4w sinh 20 + 2
+ B sinhw
4p JO 4(sinh 22+ 2n)

The leading terms in U, V, P, Q, S which precede the X’s form what is left of this
solution when b is made infinite. They give therefore the displacements and stresses
due to a shear acting at an edge of an infinite plate.

They will be found to agree with the expressions obtained by Boussivesq (‘ Comptes
Rendus, vol. 114, pp. 1465-1468) for an infinite solid, the strain being two-
dimensional ; provided that X be changed into \'.

At the point of loading itself the stresses are infinite and the displacements infinite
or indeterminate.

The series in the expressions (107) are easily seen to have a radius of con-
vergence 4b.

The series for the shear reveals a very curious phenomenon. The terms due to

. . . 2L 22y ‘ . ..
the infinite plate may be written — — ,/L They give therefore a positive shear
m ;

throughout, and zero shear on the axis of . But when the other terms ave taken
into account, the shear at points on the axis of y is

(__Afy P s }
S=— ] 200 - )—,)2H2+,)33<H3—Hg>——~,
4L

arh

== {‘3638 '7;' — 2271 0 073 U — }
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136 MR. L. N. . FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

which gives a negative shear on the axis of 7, as soon as we get away from the point
of loading.

It follows that there must be, on either side of the cross-section through the load,
a locus of points of zero shear.

Tt is easy to find the approximate form of this locus in the neighbourhood of the
point of loading. Retaining only the leading terms in the 3's in the expression for
the shear, we find that S = 0 when

2,L ’g'/j — fﬂ‘ ,?/_’ % 2 (Hl_ - }:[n)’

T o T b b
or
Im’

A(H — HY" = 2% de. =
4(H, — Hy)1 o el :F2\/Hl“Ho

0.
These are two circles passing through the point of loading and having their centres

lying on the upper edge of the beam, at a distance from the point of loading equal
b

b e = *5870.  'These

0 4/, =1, give a kind of wedge-shaped area, similar to that

+ +

e e e e e e e e e e e
= qz

Irig. ix.

enclosed by the cusp of a caustic curve, inside which the shear is negative. . This cusp
is shown in fig. ix.

For higher values of #//b this approximation will no longer hold, and the curve will
deviate from the circle.

§ 85. Dustortion of the Beam.

An interesting feature of a stress-system of this type is the distortion suffered by
lines parallel to the axis of the beam.

We have already seen that at a certain distance the axis itself suffered a bodily shift,
heing depressed in front of the acting load and raised behind it
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 137
The series for V in the neighbourhood of the load shows a similar phenomenon,

1
points to the right of = 0 being depressed by T -, and points to the left raised

+
by the same amount.

\ — L 21‘ Ak;l -:[— » ~?{‘ 2r+1 (__ 1)
Mg ==saiw ™ o orata)30) ot

H, being negative and H, being positive, as we go away from the load, the effect
of the series is to decrease this effect, the level of the points in frout of and
behind the load tending to equalize itself. 1f we work out the series for V in the
neighbourhood of the origin and of the point (0, — 0), we find (V) in the neighbour-
hood of origin

- & sinpg [ Gy B L Ly g sin V¢>
- Zw?<b> ! < + )+2vﬂwz<b> G

where the F’s and G’s have the values given on p. 99, except that now
3}

?/  sinhw 9 |
GO - .( (911111“22;:“}1, - 4ug> duy = — 2875,

Similarly (V) in neighbourhood of point (0, — 0)

_ ?_E(.__,l.w #1 o [y ZV“snl(Zv-&— 1)4)" )
= ) e

DL g s
o 30 T =
)LI/ ) ( "\ 2L sin (20 + He”

o R
7rZ/,u, 0 \7) v + 1)1 (H‘zu-w H2v+l)

2Ly" 7 77\ sin 20"
+7TZ)/L 1([)) (2> H~u~}17

where the H”s have the value given on page 102,
From these expressions we obtain the following values for the transverse dis-
placements of points on the lines y = 0, y = — b :—

L = v+l (__ l) 1 ‘ 1 g
V, = — =3 ) ( ~ g 1
0 2 0<Z’ v+ 1)! N .{../L(‘?v + u biui-l‘)

/

2L 7 fa\#t 1y N L
Vo= — =238y (=D g =
g T 0<0> (2u+1)1u“”“ <\7\’+M+ /w)'

So that, approximately, putting in the values of the constants,
VOL., CCL-—A. T
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138 MR. .. N. G. FILON ON AN APPROXIMATE SOLUTION FOL BENDING A

. i —"375 (3} -I-) o = g7 i
Vo= 5 {Tam o)+ (619) 4, (ove) = |

IJ @ . 9';3
Vo :E{—z(.106)+l§('591)""°}
- L[ o o W, :
Vo= g[8 (o 45 (229 = com 4

where 1 the above uni-constant isotropy has been assumed to simplify the caleula-
tions, so that N = fu, E = Jp.

The distortion, calculated from these formule, is represented on fig. x. for a range
of x between 4 *50.  Curve (a)-shows the distorted form of the upper edge, (b) that

L <] *
- =1\ L3
a// ‘; al#
eSS
// | ; [
L Lol ~ | QG A____-__.____..—- ----- i b_
— == N R o e e e R B S e e e o
T 2 ]
c S
RIS e
“1 a
ik el
L/ ‘\
-5 -4 =3 -2 - 0 / 2 3 4 5
‘ Values of a/b.
() distorted form of the line y=b.
(b) s ¢ o ” " " ” o y=0'
(C) ~osomirmmne “ " ” " " y: —-b.

Fig. x.

of the axis, (¢) that of the lower edge. With regard to (¢) the limiting case,
which V is actually discontinuous, does not occur in practice. In order to get o
real case, we have to take a horizontal line whose " is very small without being
actually zero. The discontinuity is then replaced by a very rapid variation, as
shown by the dotted line. '

The curves show that the depression produced in front of the load diminishes
rapidly as we go away from the upper edge, and is even changed to a rise at the
bottom of the beam. In every case, as we go away from the mid-section, . the
distorted lines rise to the right and fall to the left. -
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 139

§ 36. Cuse where the Shear is spread over an Area instead of a Line.

As in § 22, we may consider the effect of distributing the concentrated shear over
an area, instead of over a line. This is all the more important because, although
we can, in practice, approximate to a line-distribution of pressure by means of a
knife-edge, we cannot in the same way approximate to a line distribution of shear—
shear being usually transmitted by means of projecting collars, which have a certain
thickness. Tt is true that a thin notch might be cut into the material and an edge
inserted in it which might be pulled sideways. But the cutting of such a notch
would seriously weaken the material, besides altering the conditions so much as to
render our solution inapplicable.

If we suppose our shear spread over a length 2’ of the upper edge, and if we
adhere to the notation on p. 104, we find easily, L now denoting shearing force per
unit area :—

. L. Ny T ' 7,
Us=— - (it 1) e+ o)log ) — @ = ) log§ =20+ 3/ (= )]
Ty OLh = . rPHPsin (2w 2) by — 1B sin (204 2)
277./1’ (qsl (l)‘?/) - 77'()\‘/ + ,U')EO H?v - (21’ + 2) ! Jev+e o
2Lv/ 1 j P2 H38in(2v+ 3) by — 7,2 3sin (2w + 3)¢hy 1
+ a <K -+ [L+ M/ { 2 +2 Jev+s (‘)V + (,): (ET?V*I-l—H?v)
2L1/ 37 7"12”“ Rm (91/ + 1) ¢, — 121 sm (‘)u + 1) ¢, H
o ) v+l (9,} T 1) Tl

21y o 72 2sin (20 + 2) ¢y — 1,7+ 2sin (2v + 2) P,

S T
+ T 5 e (2y 4 2) ! (H-l"“ II“”)
V = L / "log 1 Ly loo 1
———“wa;" @+ ) = (2 =) gy =y log 0 = log
2Lb 1 1\ 2 722 cos (2v + 2) ¢y — 1, 2 cos (2v + 2)
e (ORI R e b,
T \M4+p o op/ b2 (2v + 2) !
__2Lb  amtleos(Zv + 1)) b, — 2 +leos (2v + 1) ¢y (Hy — o)
77(7\ + p) 0+ (2 + 1)t
2Ly = n 2 cos (2v-+ 2) by — 7,22 cos (2v+2) ¢y
+ T }0,__.___‘ P+ (2w + 2) 1 (HZ"“ H)V)
_ 2Ly Ly 7y 41 cos (20 + 1), — 7,2+ cos (2v+1) ¢, H
T 1 v (2v + ])Y

T 2
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140 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

P=— g W <90w1 _ 99%952)
w 7y T ™ 7y
8L= r™*2 cos (2v + 2) by — 1,72 cos (2v + 2) ¢,

* E PR (2w + 2) ! (Hyy o — H)

4L 3 P+ eos (2v 4+ 1) ¢y — 1,2+ cos (20 +1) .,

—

T b+l (2p 4 1)1
4L7/ § 7P cos (20 4 2) ¢y — 7, 2 cos (20 + 2) b, ey
b b (2 + 2) ! e

4Ly’ 3N 2l cos(2v + 1) ¢ — 722”1 cos ( (21/ + 1) s
wh o P (20 4 1)1

- + (Hr’v—{-l - HZV)‘

Ly’ [cos¢,  cos ¢, 4Lw 72+ cos (2v + 1) ¢~ 7=<,°‘+’ cos (2v +1 ¢,
Q=" === -3 - ; H.,,
T 0 vl ()V + 1)!

w ™ 7

4Ly § 7,2 +2 cos (2u + 2) ¢, — > 2 cos (2v + 2) @, H.

+ o ¥ (2 + 2) 1 2542
4LJ @© 9121'+1 COS (2V+ 1) ¢1 _7/.221/-(-1 oS <2V+ 1) 4)
I B (3 1 1)1 (Hay i —He,).

SR PP LT

711 712

AL, § 7.12y+zvsih (20 + 2) b, — 122 sin (20 + 2) ¢, (H

- T o P22 (2y + 2)1 Aopp1 T IIQV)
4Ly o >+ sin (204 1) py—r,2 1 sin 2w+ 1) gy
R % AT (2 + 1)1 (Hapi — Ha)
4:L7/ 2 72 +2sin (2v+ 2) — 1,2 2 sin (204 2) ¢y
+ -'/ 2y+2 ¢ H2V+2‘
7T'b 0 b (‘)y + )>

The same remarks which were made on p. 106 as to the validity of such expressions
apply here. Assuming that 20’ < 4D, we may apply these to obtain the state of
things near the layer of shear and at its extremities.

Clearly the only terms where discontinuities in U, V, P, Q, S, or then differential
coefficients, may be introduced are their leading terms, Let us therefore study
these.

Tt is easily seen that (x +a’) log », and (z—a’) log 7, are finite, continuous, and one-
valued throughout, tending to 0 at the points (F «’, 0). Their differential coefficients
with regard to 4 arve likewise everywhere finite, but are indeterminate at (F «’, 0).
They introduce, however; no discontinuity if we proceed along " = 0.

Similarly 4/ log 7, and ¥ log 7, are everywhere continuous, finite, and one-valued,
and their differential coefficients with regard to = give no discontinuity if we keep
toy =0,
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BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 141

Y (¢, — ¢,) is everywhere continuous. Its differential coefficient with regard
to v is indeterminate at (4 ¢/, 0); if we proceed along ' = 0 it increases by = as we
pass the point (— o/, 0) and decreases by = as we pass the point (4 o/, 0). The
same holds with regard to (@ + ¢/)¢, — (x — @) ¢, and its differential coefficient
with regard to x.

Hence, as far as U and V are concerned, they are both finite, continuous, and one-

dU dv . . .
> —are everywhere finite, but are indeterminate
dy’ dx

dU

dy’

valued throughout the beam.

L A
at (4 o/, 0). As we proceed along o/ = 0, , decreases abruptly hy ) < ! + —2~)

Nt p o op
as we pass (— o, 0) and increases again by the same amount as we pass (4 o/, 0).

. av L 1 .
Similarly = decreases by - g, 1S We pass (— o, 0), and increases by the same
(0 Y4 I - .

amount as we pass (+ «, 0). The first of these results means an abrupt change in
the angle at which the distorted cross-sections meet the horizontal, and the second
shows that the distorted form of the upper edge of the beam receives a sudden
inflection downwards as we enter the layer of shear, and is again suddenly inflected
upwards as we emerge from it.

It has been shown in a paper by the author “On the Equilibrium of Circular
Cylinders under Certain Practical Systems of Load” (‘ Phil. Trans.,” A, vol. 198,
pp- 147-233), that a precisely similar occurrence takes place in a circular cylinder
subjected to a uniform ring of shear, over a certain length of its curved surface. The
law that shear depresses the parts of the surface towards which it acts appears to
be a general one.

Passing on now to consider the stresses P, Q, S, we find that Q and S remain
everywhere finite, but are indeterminate at the points (4 ¢, 0). If we keep to
y' = 0, Q is continuously zero and S changes by L at (4- ¢/, 0), as it should.
But P not only contains a part which becomes indeterminate at (4= o/, 0), it also

. 2L 7 . . . .
contains a term — == log -~ which becomes infinite at those points.
T <o

)

This is a result for which we had no analogue in the case of a uniform layer of
pressure. In that problem the stresses were everywhere finite. We now see that any
finite discontinuity in the shear introduces an infinite pressure or tension P in the
neighbourhood of this discontinuity. This result, again, has been found to hold
good for circular cylinders. It may he laid down as an absolute rule that for an
engineering structure to be safe, there should never occur any discontinuity in the
shearing stress across any surface inside the material or on its boundary. It is true
that in most cases the stress will be relieved by plastic flow and the variation of the
shear will become continuous, though rapid. But such points, especially the point
from which the shear starts acting (— «, 0), where the infinite stress is a tension,
will remain points of weakness and danger, ’
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142 MR. I.. N. G, FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

§ 37. Aﬁplicat-ion of Solutions of § 33 to the Case of Tension Produced by Shearing
Stress Applied to the Edges.

In practice test-pieces for tension are usually strained by pressure applied to
projecting collars, the latter transmitting this pressure to the body of the material in
the shape of shear. In no case can we apply tension directly to the ends of a bar.
It is therefore important to know how far the effect of the method of application of
the total pull disturbs the usual solution for a uniform tension.

Let us then consider the effect of having two concentrated shears L, one as before
acting at the point (0, D), and another equal and parallel to the first acting at the
point (0, — D). By superimposing on one another two solutions of the type
obtained in § 33, we get the solution required. It will be found that this solution
gives a tension L/2D over the left-hand extremity of the beam and a pressure L/2b
over the right-hand end.

If we require to have no tension over the right-hand end, and a uniform
tension L/b at the left-hand end, to balance the shears, we have to introduce the
uniform tension solution P = 1,/2), Q = 0, S = 0, U = Lz/20E, V = yLy/20L ;
we eventually find

Um o MA2e L7 3N+ 2 Ly 4 2]/;
) 4

1(),u o +/ ) ab 16 (N + p) ab
I ( ! + 1) cosh mb — mh sinh mb

N+p  op 1%
2 : i e (cosh my cos ma — 1
1 M sinh 2mb + 2mb ( Y )

% L (my cosh mb)

- sinh my cos ma
1 m,ur( sinh 2mb 4 4 Imb Y ‘

N Ly Igy o2 L cosh mb .
= SO S e gy cosh my sin ma
v 8/.L N+ p) ab +: 20K 2; mya sinh 2mb + 2mb Yy 1y s e

1 1
= cosh mb + — b sinh mb
g LV +p e ~ sinh my sin ma
1 M sinh 2mb + 2mb
» L, 4 cosh mb — 2mb th mb
P=-" (a0 —a)— 2 — cosh "y sin ma
‘)al ( ) @ sinh 2md + 2mb Y
§ cosh mb my sinh my sin ma
" sinh 2mb + 2mb Y Y
» L 2mb ,smh mb .
Q= =3~ "~ cosh my sin mx
1« sinh 2md + 2 ‘
4 § 2L cosh mb h
my sinh my sin max
T sinh 2mb - + 2)721 Y A
Ly » 2L cosh mb
S=_7 - my cosh my cos mx

2ah " @ sinh 2mb 4 2mb
2L (cosh mb — mb sinh mb)
a sinh 2mb + 2mb

sinh my cos mz,

43
1
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If « be made to tend towards infinity, we get the expressions :

1 Lo
)» + -~ + —)coshw ——wsinhw
) 2 ,U' fd ol _ "y Wi ﬁ ‘
D e e P [eosh s — 1V du
v th j sinh 2w 4 2w < osh ) Ccos ) / ¢

1 1 cosh war
J sinh “Z cos " du

7h Jo p sinh 20 + 2u Z) b

~ 1 .
ccosh o + 7 sinh

V==l i&;‘i‘gmﬁ"éu o sinbTsin G
T ;]:%j W sulhuzlbl—;;[ 2u COS} ‘?;b! sin Z - du
‘:TI;):,/ Joélﬁ%?];ﬂét mh I gin - Z? du
Q= iIZ: r,slnii ;1:11 HZU, cosh NZ)I/ sin Nbl du
+ ilb{ jo sinjli ;(:?1:_%97& sinh - b 7 sin ~—b~ " du
S
T,

§ 38. Correction to be Applied in this Case to the Stretch along the Edges as we
approach the Points of Application of the Load.

One of the most interesting points about a problem of this kind is to find out at
what distance from the region of loading the stretch parallel to the axis takes the
value it should have on the uniform tension hypothesis. In practice all measurements
of Young’s modulus for bars are made by observing the stretch between two points
marked on the outer surface of the bar. It is of importance to know the error
introduced as we bring these points closer to the places where the stress is applied.

Let us therefore see how the stretch dU/dx varies as we go away from the points
of application of the load, keeping upon either edge of the beam. If we differentiate
the expression (108) for U with regard to @ and then write y = b — % and transform
the expression as in § 16, we get easily
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dU L 2L Loay? 200 (%1 — 20 4 ¢ oy L e
de TR T wl e %;L 7T Barb )y sinh 20 4 20 cosh Sy du
L ' " Coy Ly [® " wy' e
Y Jr‘p)wbjo’simlzu,Jr gy, Sinh T sin '“mmjogm.'zzz g O8Iy sind
Ly (1 —=2u+c* . uy . we
~ s |y i 9y Sl i
Putting m this ¥’ = 0,
[dU L. 2001 20 77— 204 e L g
( [Za,:v,v),,,f_.;o:: I DR VPP A ju inh 20 2 S, 0

Now the last inteeral may be written
b}

AW /- — N
1 — 2u 4 ¢ _uh | R
B Rt S R ) sin -
Jo < sinh 2 4 2u + 2, b
ar b ... -
+ = — it a s positive,
4 I3 4 2

and if @ is negative, then — #/4 must be written instead of + w/4. A is any
positive constant. ‘
Now the function . ) /
, — 2u 4 ¢ I |
j (u) = sinh 2u 4+ 2u Foetr = e

is such that f(0) =/ () =0, f" (»)=0 and f | /7 (v) | du is finite. 1t follows
0
therefore from reasoning similar to that given on p. 107 that j S (u) sin l% du  tends
0
to zero as x increases.
Hence, if @ be positively increasing Cd?f) tends to 0, and it « be negatively
My =0

. . dUN . . .
1creasing <T) tends to L/OE, as it should.
wr / p—
/y“U
The values of the integral, calculated for various values of the ratio x/b, have

;-

, . . . [dU C1 e . .
given the following values for <~;) , as compared with its value for a uniform
ar /

L /Y'=0
tension L/b.
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/b ((flU>/0 ! < b]I>

. +997

o +982
R e
R 1-084

— /6 1-652
g ~ 652

473 - 084

2 o1

P_,)W/g 018

i £003

We see theretore that the stretch reaches its limiting value with very great
rapidity. At a distance from the point of application of the load equal to about 14
times the greatest breadth 20 of the bar the error in the stretch is only 8/1000. In
fact the stretch begins to get near its limiting value at a much earlier stage than
this, the error being less than 10 per cent. at a distance from the load of about halt
the greatest breadth.

We find therefore that in this case also the distribution ot the load becomes
practically indifferent as soon as we come to distances from the load which are of the
same order of magnitude as the greatest dimension of the cross-section. As a
practical rule, when accurate measurements are to be taken, it will be advisable
to keep always a length varying from 1 to 15 times this greatest dimension between
the points where the stress-system is applied and those at which measurements
are taken.

PART V.

Sorurions IN Fixire TerMs ; SPECIAL APPLICATION 10 THE CAsE oF A Biam
CARRYING A Uxirorm LoAD.

§ 39. Solutions in Finitg Terms.

If in (21)~(25) of pp. 70, 71 we write

N+ 2 ) B

$(E) =175 (A +iB) & |
v 109
N+ 2 } ) l‘ - (109)

VOL. CCL —A. U
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146 MR. L. N, G. FILON ON AN APPROXIMATIE SOLUTION FOR BENDING A

1
Gl (é':) = 2—,;1« (O/t + ﬂ:))l) f/t

|

]
P o ... (109),
B =5, (G=iD)y

we obtain the following homogeneous solutions in x, 4.

N+ 3 ny 1 ) h
K (Anun + ann) - ﬁ (Anvu-l - B/L“n-l) + é’/; (O”u” + D,{U”)

= 8u (M + p)
R _ e 1
- 8/,L (7»/ + /J') (A'mn B”u”) 4'w (A7I?l'71—1 + Bnlvn»-l) - ”2,; (C:ﬂ)n -_ _[)n’l/fn)
/3 -1 _ .
P = A” { 0771 Up—y — 7]1__(_7}__“)_ YUy_o + Bn )71/ Vy—1 + @'Q}—‘l) J“ -2
\ 4 2 7

+ V) (C,,u”_l + I),,'U”..l) C o, (110),

Q A ( Uy + Z/L*'Q] >J Uﬂ-—2> + Bu <4 Vyy = 7297/2_”1—)‘ yuﬂ—2>
-7 (Onun-—l + Dnvfz—l)

S o n (n— 1) 5 , [ " (n —1)
S = A-/t K—' 4~: Uy — “—*“T?J—M'w :l/un—z/ + L/L K/:I: Upy = P Jvu~,>
—n (Onvn—-l - -‘Dﬂ,“H—I)J
' ¢ &p
where u,, v, are the two homogeneous solutions of —= 7; = 0, thus,
o 0 (n — 1) 2
Uy =@ = @ e
e, R —1) (0 — 2) s s
v, = na""y T 9.3 oy L

and vy =1, vy=0,u_, =0, v_; = 0.

We may add any number of such polynomial solutions. If we take n of them,
beginning with % = 1, and in the expressions (110) write y = 4 b, we find (Q).s,
(Q)—s (S),s and (S)_; each equal to algebraic polynomials in x of degree (n — 1).

Also, since A,, B}, C;, D, come in only in the form il - C, %- + D,, they are

equivalent to only two constants. We have therefore (4n — 2) constants free.

Now these are not enough to make @ and S coincide with any two given
polynomials on the upper and lower faces of the beam. Obviously, however, the term
containing «"~! both in Q and S is independent of y and therefore cannot satisfy a
perfectly general condition. If we make this term disappear by writing C, = A,/4,
D, = — B,/4, we have now only 4n — 4 free constants left, but our polynomials
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being now of the (n — 2)* degree, we should have enough constants to be able to
identify Q and S with any two given polynomials on either face of the beam.

As a matter of fact this is not so; for there are solutions, namely, those for :
(1) a uniform longitudinal tension, (ii.) a pure bending couple, (iii.) bending with
constant shear, which make Q and S zero over both faces and yet do not annul all
the 4n — 4 free constants. There must therefore be relations between the 4n — 4
equations giving the constants. They are not all independent and, consequently,
not every system of surface stress expressible in polynomials corresponds to a
solution of this type.

§ 40. Case of n = 4.

Let us see what surface conditions can be satisfied by the solutions of the fourth
order.
In this case, remembering D, = — B,/4,

A A, B,
Q= <Tl — o]> + <~2& - 202> 4 <_ B 2D2>y
A, '
+ (3~ 303> 2 4 (= 4B, — 6Dy) ay + (3A, + 3C,) 2
128" + (= 3B, — 12D,)a% + (5B, -+ 4D,)

53
Q)AQ

S = <.—41~ + D1> + < s 2D2>90+ <— - = 202>?/

3B,
+ ("4 3Dy ) 4 (= $4, = 6C) oy + (= B, — 3D,y
+ (—9A, — 12C) «®y — 12Bay® + (7TA, + 4C,) %,

and

_ N+ {Ao"*‘ Ay 4 Ay (0% —3°) + Ay (2 — Bay®) + A,y (2 — 6%+ 41)
84w L 4 By + 2By + By(32%y — o°) + B, (42%y — day) }
4L {Bly + 2Byzy + 3B, (¢ — o) + 4B, («%y — 3903/3)}
4p = 2A0° — 6Agwy® — 4A, (32%° — o)
1 {CO + Cz 4 Cy (2? — 9*) + Cy (0 — 3ay?) + C, (x* — 62%® + y“‘)}

+ 2u + Dy + 2Dyzy + Dy (3% —1P) + D, (4aPy — day?)

_ N4 { —By—B,x—B, (2*—*)— B, (x*— 8xy?)— B, (w4—6w2y2+y‘*)}
OV L R Ay 2Amy Ay (Bt —) A, (daty —day)
_ 1 {Aﬁ/ + 280y + 3Ag (2'y — °) + 44, (2% — 3uy®)
dp L 4+ 2By® + 6Bgwy® + 4B, (3a%y? — oY) }
4 L Dk Dut ok Dule = ) Dy = i) Dyt — 6y 4y
2l = Cy — 20wy — Cy (3% — y¥) — C, (4ay — 4uy?) }
U 2
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148 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A
‘%Al 2 A
P = 40 42?00 4y (PP 4 2D,

+ a? <l‘4"3 + 3C3> + 2y (5" By + 6D;) + 37 (— AtA; — 3C,)

+ 2® (8A, + 4C)) + o* (15B, 4 12D,) + «¢y® (— 21A, — 120,)

+ y?; (— 9B4p - 41)4)9
and we notice that, in virtue of the relation B, = — 4D, the coefficient of z*y in Q
goes out. Hence the coefficient of «* is the same for Q,;, and Q_, This alone

shows that the solution is not the most general that can be got, given that the
stresses on the upper and lower surfaces are quadratic functions of .

§ 4. Determination of the Constants for a Beam Uniformly Loaded.
Here we have, over the upper surface y = 4 b: Q = constant = ¢ say;
overy= —0: Q=0; andovery = 4 0: S = 0.

The last two conditions imply

B, 4D, 1= wQ:o..,i..(m)

],,

S22, —2Bir=0 . (112)
—2“&%+NUM+MM:O....... (113).
— 9A, — 6C, = 0 . (114)
T4 sD, =0 . (115)
— 9A, — 120, = 0 . (116)
(116) and

4C, = A, . (117),

give at once
A, =0, C= T ¢ & £ 8

The conditions for Q give

?_Q+@+ﬂWwww +xﬁuwwH¢m=o.u%y
_ 3B, —6Dy=0 . . . . . . . . . . (121)
g'g-202+b2(12A4,)::0 Coe e (122),
8C=0 . (123)
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(124) is identically satisfied since 4D, = — B,
Also (122), (118), (113) imply
,=0C,=0
(119), (120), (112) lead to .
3 )
&+u%=—§i
l
1
Br=—= 1o !‘
A —4C, =29 J
Also (128), (114) imply
Ay =C, =0

(121), (115) are identical. Together with (111) they give
B, = )pm4%n)l

Dy=— 1o (Bi+ D)) |

149
(124).

(125).

(126).

(127).

(128).

Equations (118), (124), (125), (126), (127), (128) contain the solution we require.
If we substitute the values of the constants in the expressions for the displacements

and stresses, we find, after some reductions :

' o+ 3 C By 1)7
U:const.—l—ac{A18 (J_'_M#)+§i} Tf + 4 2y
4 (2y /1 1
+< +D>{ +b~<i<‘}"_s(1'+é",;>,>}

e [y _ el 1
41)3{]@ vy (E"‘“m ’

No—p G B, B,
7 — BT N —
V = const. —y {Al S (N + ) + 5 } E® (z 7y°)

‘B 4y® g fat (e 1 1\
BCRRIE L E A R e A

16%®

P=<%1+0)+2&y—%W+OWG%+D)

gy

—_ 3
8 Vs ?

_ 9 3w _
Q"—2-|"4b 4%

B 2
s=(i+0)(-5) - 150 -§).
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150 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

In the above terms in A,, C, correspond to a uniform tension along x, the terms B,
to a rigid body rotation, the terms B, to a solution for a pure bending couple, and the

B . . . .
terms ( ;I + D1> to a solution for bending under a uniform shear. These various
\

constants can be adjusted according to the conditions at the ends x = + .
If, for instance, the total pressure over the ends and the total bending moment are
to be zero, the load 2ga being balanced by the shear at these ends, we have

3A
41 + O] — O, -

B
f + D, =0,

(L
B = + 8 9 + 5 /)
and we then have
_ s _s%y 9 s -
P-——-— OZ) 42)) +()b,+4 B

_ 9 | 3w _
Q - 2 + 4p 408

TR St

jccw?/ ey _ 4 9«7/ 3 < 1 A 1:\
U435 T55 —w { I AR S ‘m,)

@ 3\¢ SYTA . o ‘1 1
V=- <Sb’+ob>1<( "W/>+16m{1a T 5 +?/<E ,J}d

el

This is the solution for a beam uniformly loaded on the top over a length 2a and
held up by shears over its terminal cross-sections. In this way the case which
occurred in the general solution, and of which the consideration was postponed in § 9,
namely «; 3= B, is seen to lead to a fairly simple solution in finite terms.

§ 42. Remarks on the above Solution.

The above values (129) for U, V, P, Q, S in the case of a beam carrying a uniform
load, lead to the following remarks :—

(1) There is no “Neutral Axis” properly so-called; 7.e., although the tension
vanishes for y = 0, tis not strictly proportional to ¥, a cubic term being introduced.
But if (a® — 2?)/y* be large, which is the case for any beam whose length is large
compared with its height, the proportional effect of the terms introduced will
be small.
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(2) The stress Q is not zero ; that is, DE SAINT-VENANT'S assumption, that there is
no stress across fibres parallel to the axis of the beam, does not hold. Indeed, it was
obvious from the beginning that it would not, seeing that there is a stress Q at the
upper surface, by hypothesis.

(3) The distribution of shear at each cross-section is parabolic, and is given in terms
of the mean shear by the same formula which holds when the shear is uniform.

&V (a® — %) 6¢
A —_ e 3T Ty T
(4) <dz‘3>y=o =Ty 17w

The curvature is therefore no longer exactly proportional to the bending moment,
but contains an additional constant term. A similar result has been obtained by
Professor Karr Prarson and the author for beams of elliptic cross-section under
their own weight (¢ Quarterly Journal of Mathematics, vol. 31, p. 90). It has
since been shown to hold for beams of all forms of section by Mr. J. H. MicueLL
(‘ Quarterly Journal of Mathematics,” vol. 82).

§ 43. Historical Summary : Remarks and Criticism.

It may be of interest to give in this place a short sketch of the previous works on
the subject, in so far as they are at present known to me.

Lamg, in his ¢ Lecons sur I'Elasticité’ (p. 156 et seq.), discusses the general problem
of the rectangular block, with the single restriction, that the surface stresses are
purely normal and are even functions of the co-ordinates. He fails to determine his
constants, except in the particular case where the cubical dilatation throughout the
block happens to be previously known. As this condition is never satisfied in any
actual problem, the solution is of comparatively little use.

DE Saixr-VEnaNT, 1n a classical memoir (‘ Mémoires des Savants Ftrangers de
I'Académie des Sciences de Paris,” vol. 14), has given solutions for the rectangular
parallelopiped under torsion and flexure. These solutions correspond to the case ot
terminal stress-systems which are transmitted through an otherwise unstressed
long bar.

Numerous attempts have been made to solve the problem of the rectangular elastic
solid by removing one or more faces to infinity, and thus simplifying the surface
conditions.

M. Emrce MATHIEU, in his treatise, ‘Théorie de I'Elasticité des Corps Solides,
Paris, 1890 (see also ¢ Comptes Rendus,” vol. 90, pp. 1272-1274), has given a solution
of the problem when it can be reduced to two dimensions. His problem is therefore
practically the same as that of this paper, except that he has considered only what 1
have called case (A) on p. 66, and also, that the length « is not taken to be large and
the distribution of stress over the faces @ = + « is given. The solution is, however,
so complex in form, and the determination of the constants, by means of long and
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152 MR. L, N. ¢, FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

exceedingly troublesome series, so laborious, that the results defy all attempts at
interpretation.

" Dr. Cures (‘ Roy. Soe. Proc.,” vol. 44, and * Roy. Soc. Archives’; also ¢ Quarterly
Journal of Mathematics,” vol. 22) has considered at length the solutions of the
equations of elasticity in integral powers of @, ¥, z, and has applied them to the beam
problem. Among other results he has obtained expressions for the terms independent
of z of a form similar to (110) of this paper. Incidentally, he verifies a number of
DE SAINT-VENANT'S results ; but no further application is, 1 think, made of the two-
dimensional terms.

Quite recently, Mr. J. H. MicHELL has investigated the theory of long beams under
uniform load (‘ Quarterly Journal of Mathematics,” vol. 32, pp. 28 et seq.). The object
appears to be to extend DE SAINT-VENANT'S researches to uniformly loaded beams.
Mr. Mrcugern deduces several interesting results applicable to beams in general and
to the rectangular beam in particular, but, so far as I can see, he makes no claim to
having obtained explicitly the complete solution in any case.

The surface conditions, however, may be thinned down still further by removing
four faces to infinity, leaving only an infinite plate of finite thickness. The problem
in this form has been formally solved by Lamf and Crareyron (“Sur l'équilibre
intérieur des solides homogénes”; ‘ Mémoires des Savants Htrangers de I’Académie
des Sciences de Paris,” vol. 4, pp. 548-552). Their solution, obtained in the form of
quadruple integrals, satisfies the surface stress conditions over the two infinite faces.
The objections to this solution are two-fold. In the first place it is difficult of inter-
pretation, and the integrals do not enable us to obtain a clear notion of the separate
effects of the various forces applied to the plate. In the second place this solution
takes no heed of the conditions at the other four limiting faces of the plate which, we
should always remember, although they have been removed to a very large distance
away, have not physically disappeared. Given total tensions, shears and couples,
applied to the four narrow faces of the plate, will produce stresses that will be
transmitted through the plate, exactly as in the case of a bent or twisted bar, and
will produce a finite effect at points of the plate infinitely distant from the edges,
even though the large plane surtaces should be absolutely free from stress.

In order therefore that Lami and Crarryron’s formulse may correspond to a
physical reality, we must superimpose on their solution another of this transmissional
type, such that the total shears and total couples due to the sum of the two solutions
are all zero round the contour of the plate. Now the problem of the thick elastic
rectangular plate, under given total shears and couples round its contour, but other-
wise free from stress (which is the analogue for plates of the ordinary tensional and
flexural solutions for bars), is another of the unsolved problems of the theory of
elasticity and, until it is solved, Lamé and CrAareYRON’s solution, unless it happens
-of itself to satisfy the conditions of no total force at the edge
true in special cases—fails.

which will only be
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More recently the same problem has been attacked by M. C. RiBIERE in a thesis
(““ Sur divers Cas de la Flexion des Prismes Rectangles,” Bordeaux, 1889 ; see also
“ Comptes Rendus,” vol. 126, pp. 402-404 and 1190-1192) in which he gives a solution
in a series of circular and hyperbolic functions. He takes his plate of finite dimen-
sions and built-in (encastrée) at the edge. By this term he understands that the
edge is constrained to remain plane and vertical, and is subject to no shearing-stress.
For other terminal conditions the solution, as M. RiBIERE states himself, 1s insufficient.
I find that, if the edges of the plate be removed to infinity, his solutions degenerate
into LamE and CLAPEYRON’S integrals, of which they therefore give the true
meaning.

M. RiBIiRE, in the same thesis, has also investigated the two-dimensional case,
which has been treated of in the present paper.* I am indebted to M. Risikre for
very kindly communicating to me his thesis, with which I became acquainted after
my work had been completed. His solutions are of the form (26) (27) (28), and he
determines his coeflicients, as far as I can see, by the method used here, but does
not transform his expressions further. Like LaMi and CHAPEYRON, he restricts his
applied surface stresses to be normal and investigates only two special cases.

M. Rieikre takes, as I have done, m = na/a. This, by the way, is not absolutely
necessary. Another set of solutions might be obtained by taking m = (2n + 1) 7/2a.
When « is made very large, as is the case in every one of the problems treated here,
either set of solutions will lead to the same final form, provided the total terminal
conditions are attended to. M. RiBikirg, on the contrary, in order to be able to
evaluate his series, which become far more manageable when b/a is large, treats
chiefly of cases of thick beams of very short span. Now in this case it is no longer
permissible to consider merely the total conditions over the ends # = 4 a, and to
treat the actual distribution over these ends as unimportant. M. RIBIERE gets over
this difficulty by supposing his beam to be enrcastré, as defined above. The same
mathematical condition of fixing is assumed by Professor PocmmAaMMER (¢ CRELLE'S
Journal,” vol. 81) when treating in a similar fashion of the beam of circular cross
section.

It seems doubtful whether anything of this kind does really occur at an actual
built-in end of a beam. Certainly PocamaMMER and RIBIERE'S conditions do not
agree with the view taken by DE SamNT-VENANT, who, in his calculation of the
deflection for a cantilever, has assumed that the elastic line is not horizontal at the
built-in end. In this case, however, Love has pointed out that the elastic line may
have any small slope at the built-in end, provided we superimpose a suitable rigid
body displacement. But both he and pE SAINT-VENANT agree to make the end

* Since writing the above, I find that Professor LaMB (¢ Proc. Lond. Math. Soc.,” vol. 21, p. 70, paper
read December, 1889) has worked out the same problem in the form of a series of circular and hyperbolic
functions, but he has left his results in this form, without interpreting them further, and I cannot discover
that he has considered end-conditions.

VOL. CCL.—A. X
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154 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A

sections distorted. As a matter of fact, what really happens at a built-in end is
quite unknown. Under these conditions any solution which makes U= 0, dV/da =0
over the ends must be restricted to the case of an infinite continuous beam resting
upon a series of equidistant supports, each at the same vertical height; the load
carried by the beam being exactly repeated over each span. A rail under its own
weight and carried on sleepers is an approximate example, In this case PocEHAMMER
and RiBrkErE’s solutions are exact, and it is then legitimate to make the span as small
as we please.

- In practice such conditions will but rarely occur, because, as is well known, any
slight difference in the height of the supports, or in the manner in which the beam
bears upon them, will upset the symmetry altogether.

The ultimate step in the process of thinning down the boundary conditions is taken
when one of the two boundaries of the infinite plate is itself removed to infinity,
leaving only one plane bounding an otherwise unlimited solid.

This problem also has been solved by Lami and CrapevroN (loc. cit.) in terms of
quadruple Integrals. In this case the limiting conditions at infinity cease to be
important, because, in a solid infinite in three dimensions, finite stresses are not
transmitted undiminished from infinity, as in a rod or lamina. The solutions, in
fact, will lead to stresses that become zero at infinity. This has been shown by
BoussiNesQ (¢ Applications des Potentiels & I'Etude de 'Equilibre et du Mouvement
des Solides Elastiques,” Paris, GAUTHIER-VILLARS, 1885), who has interpreted Lams
and CLAPEYRON’S results, and obtained by a new method simple expressions for the
stresses in an infinite solid, due to arbitrary surface forces applied to a bounding
plane. The same results have been obtained by Professor Crrruri (¢ Ricerche
intorno all’ Equilibrio de Corpi Elastici Isotropi,” °Reale Accademia dei Lincei,
vol. 13, 1881-2) in a different way.

BoussiNesq, on p. 280, suggests a possible application of his method to the case
of two parallel planes, but he makes no attempt to follow it up.

In two papers in the ‘Comptes Rendus’ (vol. 94, pp. 1510-1516, and vol. 95,
pp- 5-11) he has considered the case when the problem of the infinite plane may
be treated as two-dimensional, and there he has tried to extend his method to two
parallel planes, but had to fall back upon an assumption mathematically unjustifiable.

§ 44. Recapitulation of Results and Conclusion.

Looking back upon the results obtained, we see that the general solution given
has enabled us to deal with all the most important statical problems connected with
the elastic equilibrium of a long beam, of finite height, in so far as the approximation
involved in treating them two-dimensionally is valid; and it will be valid, if the
horizontal dimension of the cross-section be either very small or very great.

Incidentally the question of the effect of concentrated loads, whether in the form
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of pressure or of shear, has been discussed. In the case of a beam doubly supported
and carrying a concentrated load in the middle, a convergent series has been
obtained, giving the exact correction which the finite height of the beam makes it
necessary to apply to BoussiNgsQ's results for an infinite elastic solid.

The results of this part of the paper have been tested by experiments on glass
beams, of which it is hoped to eventually publish an account, and they have been
found to agree, on the whole, with observation.

The effects of pressing a block of elastic material which rests on a rigid plane, and
the manner in which such pressure is transmitted to the plane have also been
investigated. It has been found that the pressure on the plane is limited to a
restricted area, outside which the elastic block ceases to be in contact with the plane.

The effects of shearing stress have next been considered, in particular the
distortion which it produces in lines parallel to the axis of the beam. As in the case
of the circular cylinder and in that of the infinite solid bounded by a plane, shear is
found to depress those parts of the material towards which it acts.

It is also found that a discontinuity in the shear applied to the surface—although
the shear remains finite—involves one of the other stresses becoming infinite, and so
is a source of weakness and danger.

The behaviour of a beam under two concentrated loads, acting in opposite senses
upon opposite faces of the beam, has been studied. The manner in which the shear
across the section varies as these loads are made to approach each other has been
exhibited by various diagrams. They show how rapidly the effects of the particular
distribution of any total terminal load die out as we go away from the end. At
a distance of the order of the height of the beam, they already begin to be
negligible.

At a lesser distance than this, however, such effects may become exceedingly
important. The case of rivets is instanced, and it is suggested that the results
obtained here may give some information which shall be useful in this connection.

Finally a solution in finite terms is obtained for a beam which carries a uniform
load. It is shown that the assumptions of the usual theory of flexure are in this
case no longer true, but are approximately true only if the height be very small
compared with the span. The correction to the curvature, as calculated from the
usual formula, 1s found to be a constant.

With regard to the numerical work, the arithmetic has been checked wherever
possible, and 1t is believed that no serious error has crept in. The values of the
integrals, however, have been obtained by the use of quadrature formulze, and these
may not have given a satisfactory approximation in all cases. The three first decimal
places, nevertheless, should be correct. As the numerical work was undertaken
chiefly to illustrate fairly large variations and to represent them by diagrams, this
accuracy appears sufficient.
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